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Executive Summary

This deliverable specifies hardware and software requirements on HECTOR demonstrators de-
signed in the framework of workpackage WP4. The aim of the demonstrators is to validate True
Random Number Generator, Physically Unclonable Function and Authenticated Encryption with
Associated Data developed during the HECTOR project and to illustrate their potential rele-
vance for the real-world security.

In order to evaluate characteristics of the proposed algorithms and hardware blocks in applica-
tion domains, which can differ considerably in their requirements, the following three applicative
scenarios have been selected:

• Demonstrator 1 : Stand-alone, AIS20/31 compliant, high performance secure TRNG;

• Demonstrator 2 : Secure portable USB data storage – encrypted data storage with user
and device authentication for protecting data at rest;

• Demonstrator 3 : Secure messaging device – data terminal with a strong authentication
protocol for sending encrypted authenticated messages via an insecure communication
channel.

The demonstrators will be implemented on two hardware platforms. While Demonstrator 2
and 3 will be portable, small form-factor devices powered by the USB bus, Demonstrator 1
needing higher performance will be powered by an external supply. The three demonstrators
will feature the USB interface to be connected to the host computer and a metallic case ensuring
an electric shielding and tamper evidence.

The specifications of demonstrators and the scope of their security evaluation is determined by
their future application in practice.

HECTOR D4.1 Page II



D4.1 - Demonstrator Specification

Contents

1 Introduction 1

2 Demonstrator 1: Standalone, High Performance Secure Random Number
Generation Device 2
2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.3 Building Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.4 Hardware Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5 Scope of Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.6 Conformance to Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Demonstrator 2: Secure Portable USB Data Storage 27
3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3 Building Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.4 Design Rationale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.5 Hardware Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.6 Scope of the Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.7 Conformance to Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4 Demonstrator 3: Secure Messaging Device 53
4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.3 Building Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.4 Design Rationale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.5 Hardware Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.6 Scope of the Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.7 Conformance to Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5 Security Evaluation 67
5.1 Guidance Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.2 Role of the Demonstrator Physical Construction . . . . . . . . . . . . . . . . . . 67
5.3 Attacks in Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.4 Evaluation Assurance Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6 Summary and Conclusion 70

7 List of Abbreviations 71

HECTOR D4.1 Page III



D4.1 - Demonstrator Specification

List of Figures

2.1 Functional diagram of Demonstrator 1 . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 PLL-based TRNG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Example of the PLL-TRNG input/output waveforms . . . . . . . . . . . . . . . 5
2.4 PLL-TRNG using two PLLs in series or in parallel . . . . . . . . . . . . . . . . . 6
2.5 Principle enabling external observation of the jitter and its embedded measurement 7
2.6 PLL-TRNG configuration with higher entropy rate and an observation possibility 7
2.7 Block diagram of the PLL-TRNG design implemented in Cyclone V FPGA . . . 8
2.8 Configuration of two PLLs as sources of randomness . . . . . . . . . . . . . . . . 9
2.9 Schematics of the digitization mechanism . . . . . . . . . . . . . . . . . . . . . . 9
2.10 Schematic diagram of the PLL-TRNG dedicated embedded tests . . . . . . . . . 11
2.11 TRNG control and output interface . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.12 DC-based TRNG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.13 Example of the DC-TRNG waveforms of relevant signals. . . . . . . . . . . . . . 14
2.14 Block diagram of the DC-TRNG design . . . . . . . . . . . . . . . . . . . . . . . 15
2.15 Schematics of the digital noise source. . . . . . . . . . . . . . . . . . . . . . . . . 16
2.16 DRG.3 RNG class (from [13]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.17 Demonstrator 1 hardware platform . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.18 USB devices block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.19 Demonstrator 1 power supply diagram. . . . . . . . . . . . . . . . . . . . . . . . 23
2.20 Design of the Demo 1 mechanical structure. . . . . . . . . . . . . . . . . . . . . 24
2.21 Mechanical design cross section of the Demo 1 . . . . . . . . . . . . . . . . . . . 24

3.1 Demonstrator 2 helper data generation . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 Demonstrator 2 enrollment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3 Demonstrator 2 activation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.4 Demonstrator 2 data encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.5 Demonstrator 2 data decryption . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.6 A typical TERO cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.7 TERO PUF architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.8 Failure rate Pfail as a function of different codes and bit error probabilities . . . 39
3.9 Fuzzy extractor based on codes with systematic encoding (Kang’s scheme [12]) . 39
3.10 Block diagram of the PLL-TRNG design implemented in SmartFusion2 FPGA . 43
3.11 Demonstrator 2 and 3 hardware platform . . . . . . . . . . . . . . . . . . . . . . 45
3.12 Microcontroller subsystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.13 USB OTG hardware controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.14 Power supply of the Demonstrator 2 and 3 . . . . . . . . . . . . . . . . . . . . . 49
3.15 Demonstrator 2 and 3 HW platform . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.16 Layers of the Demonstrator 2 device. . . . . . . . . . . . . . . . . . . . . . . . . 50

4.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.2 Interface of the control block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.3 Handling the Command register . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

HECTOR D4.1 Page IV



D4.1 - Demonstrator Specification

List of Tables

2.1 PLL-TRNG state bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 DC-TRNG state bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3 Parameters of the DRNG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1 First evaluations on the characteristics of the TERO PUF . . . . . . . . . . . . 37
3.2 Calculation of min-entropy and binary entropy function based on bias . . . . . . 38
3.3 Left over entropy depending on Hb (Golay is processed in 5 loops) . . . . . . . . 38

HECTOR D4.1 Page V



D4.1 - Demonstrator Specification

Chapter 1

Introduction

This deliverable contains software and hardware specifications of the HECTOR demonstrator
platforms as an outcome of Task 4.1. The HECTOR hardware-software demonstration plat-
forms were chosen depending on outputs from work packages WP2 and WP3 as defined in
Deliverable 1.2. According to the HECTOR Grant Agreement, the aim of the work package
WP4 is to demonstrate the validity of the new approaches, building blocks and cryptographic
primitives in common data security applications.
In the framework of WP2, the True Random Number Generator (TRNG) and Physically
Unclonable Function (PUF) were proposed. The Authenticated Encryption with Associated
Data (AEAD) algorithm is the outcome of WP3. The TRNG can be used either for generation
of encryption keys or for providing general purpose random bit streams. The PUF can be
adopted for device authentication or secure storage of a key, bounded to a particular device.
The AEAD ensures data confidentiality, integrity and authenticity.
To illustrate the flexibility of the proposed building blocks, the demonstration of HECTOR
outcomes have been divided into three usage scenarios – demonstrators. Following the project
proposal, the demonstrators will showcase at least one instantiation of the above mentioned
building blocks. Demonstrator 1 will feature a highly secured TRNG, according to the state of
the art security requirements. Demonstrator 2 and 3 will leverage all three proposed building
blocks, each of them in its own usage scenario.
The hardware architectures of the demonstration platforms reflect the required optimization
towards application needs. To ease the integration, most of the building blocks of WP2 and
WP3 have been developed on the HECTOR evaluation platform hardware, which is close to that
of demonstrators. However, some integration tasks go beyond the scope of the work packages
of the HECTOR project, e.g. the authentication protocol in section 3.2.1.
The deliverable is divided into three main chapters, each dedicated to one demonstrator. Each
chapter starts describing the motivations behind the particular demonstrator. It continues
determining its parameters and operation, defining the building blocks and specifying the un-
derlying hardware. Finally, it delimits the scope of the security evaluation of the demonstrator.
The whole document is completed by an extra chapter on general aspects of security evaluation
applicable to the demonstrators.
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Chapter 2

Demonstrator 1: Standalone, High
Performance Secure Random Number
Generation Device

2.1 Motivation

The aim of Demonstrator 1 is to show that the proposed TRNG designs and especially the
new TRNG design approach can be successfully applied in high-end real-world data security
applications, in which a secure and robust TRNG is an essential construction block. The
proposed demonstrator could be used as a stand-alone security peripheral – the source of high
quality random numbers – in high-performance data servers and communication systems.

2.2 Functional Description

Demonstrator 1 is a physical true random generator including cryptographic post-processing,
which is aimed at generation of random bitstreams achieving security level PTG.3, as defined
in AIS 20/31. The generation of random numbers is provided as a security service for the user.
Two kinds of sources of randomness and associated random number generators exploiting these
sources are demonstrated to be compliant with AIS 20/31 in the two operational modes of the
device:

• PLL-based TRNG,

• Delay chain-based TRNG.

The PLL-based TRNG takes advantage of the physical isolation of the phase-locked loop (PLL)
from the rest of the logic device. This physical isolation ensures higher independence of the
source of randomness from the surrounding logic area. Another advantage of the PLL-TRNG
is the repeatability of the design independently of device family and technology.
The delay chain-based TRNG takes advantage of the high-speed carry-chain primitives. These
primitives are widely available on most FPGA devices from different vendors. These high-
speed primitives are used to sample the jittery signals with high resolution. This enables the
entropy extraction without the requirement for a high jitter accumulation time, which leads to
a high-throughput TRNG.
In both operational modes, the quality of the generated numbers is tested using embedded
statistical tests (the total failure test and online tests), which run continuously. Consequently,
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the statistical test does not need to be launched manually.
Besides embedded statistical testing of the source of randomness, the deterministic part of the
generator is tested at startup and after each reset using a known answer test (KAT).
The demonstrator has two functional modes of operation: a user mode and an evaluation mode.
In the user mode, at each request, the user can:

1. Read up to 32 MB of internal random numbers (a cryptographically post-processed ran-
dom bit stream),

2. Determine (read) the state of the generator,

3. Reset the generator.

In the evaluation mode, the evaluator (tester) can:

1. Read up to 32 MB of internal random numbers,

2. Determine (read) the state of the generator,

3. Reset the generator,

4. Read up to 32 MB of raw random numbers for testing purposes (according to AIS20/31),

5. Read up to 32 MB of internal data (depending on the type of generator), aimed at
characterization of the source of randomness.

2.3 Building Blocks

Demonstrator 1 demonstrates the suitability of two types of HECTOR building blocks for high
end cryptographic applications:

• Physical true random number generator (PTRNG) generating the raw binary signal,

• Cryptographic post-processing using a cryptographically secure deterministic random
number generator (DRNG) continuously seeded by the PTRNG.

We recall that our intention was to implement the generator including the cryptographic post-
processing block on a hardware platform similar to that of HECTOR evaluation boards, in
which three types of FPGA were used: Altera Cyclone V, Xilinx Spartan 6, and Microsemi
SmartFusion2 FPGA.
Figure 2.1 depicts the functional diagram of Demonstrator 1. In order to illustrate wide ap-
plicability of our approach, the HECTOR consortium decided to implement two types of the
raw random bitstream generators in two types of FPGAs – Altera Cyclone V and Xilinx Spar-
tan 6 FPGA. A phase locked loop (PLL) based generator is implemented in Altera Cyclone
V FPGA and a delay chain (DC) based generator is implemented in Xilinx Spartan 6 FPGA.
The control unit and the cryptographic post-processing is common for both generators and it
is implemented in the third FPGA device – Microsemi SmartFusion2 FPGA.
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PLL-TRNG

Control unit
&

cryptographic
post-processing

RNG_data
RNG_clk

Alarm

Altera Cyclone V FPGA

Microsemi SmartFusion2 FPGAXilinx Spartan 6 FPGA

Control interface

DC-TRNG Alarm

Control interface

RNG_data

RNG_clk

Figure 2.1: Functional diagram of Demonstrator 1

2.3.1 Secure PLL-based Generator of the Raw Random Bitstream

Principle

The TRNG exploiting the jitter introduced by the PLL, was first proposed in [10]. The PLL-
based TRNG (PLL-TRNG) uses coherent sampling to generate a stream of random bits. The
PLL plays two roles in the generator:

• The random jitter caused by electric noises inside the PLL serves as a source of random-
ness.

• The PLL guarantees the following relationship between its input and output frequencies:

f1 = f0 ·
KM

KD

, (2.1)

where KM and KD are multiplication and division factors of the PLL, respectively.

The block diagram of the PLL-TRNG is depicted in Fig. 2.2. The clock signal clk1 is sampled in
a D flip-flop (DFF) using the reference clock signal clk0. The output of the flip-flop is decimated
in the decimator, in which KD samples (outputs of the DFF) are added modulo 2 to form one
raw random bit at the output of the generator.
In this first configuration of the PLL-TRNG, the source of randomness is the tracking jitter of
the PLL, i.e. the difference in phases between the reference clock (ideally jitter-free) and the
jittery output clock of the PLL. Because of the PLL principle, the tracking jitter of the PLL is
bounded and it depends on the jitter of the reference clock and the parameters of the PLL (the
jitter of the voltage-controlled oscillator, the bandwidth of the filter and the dumping factor)
[9].
Figure 2.3 depicts an example of input/output waveforms of the PLL-TRNG, in which the
multiplication factor is KM = 5 and the division factor is KD = 7. It can be observed that the
rising edges of the reference clock signal (clk0) are placed in seven positions during one period
TQ = KDT0 = KMT1. In two of them, the rising edges of clk0 appear when the sampled signal

HECTOR D4.1 Page 4 of 74



D4.1 - Demonstrator Specification

PLL

(KM, KD)

clk0

DFF
clk1 Decimator

(XOR-ing KD samples)

Raw random 
binary signalq

Figure 2.2: PLL-based TRNG

is equal to one (samples 3 and 6 taken in the first half of the sampled clock period). At the
moment when two other rising edges occur, the sampled signal is equal to zero (samples 1 and 4
in the second half of the sampled period). At one rising edge of the reference clock the sampled
clock rises from 0 to one (sample 0). Finally, the last two of the 7 samples belonging to the TQ
period appear close to the falling edge of the sampled signal (samples 2 and 5). The position
of the seven samples repeats in all periods TQ causing a pattern with few unstable bits at the
DFF output.
The decimator from Fig. 2.2 can be seen as a one-bit counter counting bits equal to one during
each period TQ. The decimator value at the end of the TQ period representing the TRNG
output depends thus on the number of unstable (i.e. random) bits. However, we can remark
that it also depends on the duty cycle of the sampled signal, which should remain stable.

  Period TQ: KD sampling positions during TQ AND inside T1 

   f1  = f0 

KM

 KD

   clk1

   clk0

   q

5
PLL guarantees the frequency 
relationship:

7

Consequently:
    T0·KD= T1·KM = TQ 

   0    1    2    3    4    5    6    0

Figure 2.3: Example of the PLL-TRNG input/output waveforms

It was shown in [10] that if the standard deviation of the PLL output jitter (σjit) fulfills the
following condition:

σjit > MAX(∆Tmin), (2.2)

at least one sample will be random during each period TQ. The term MAX(∆Tmin) in condition
(2.2) represents the worst case (the longest) distance between the rising edges of the clock signal
clk0 and rising or falling edges of clk1 during the TQ period. It is given by

MAX(∆Tmin) =
T0

4KM

GCD(2KM , KD) =
T1

4KD

GCD(2KM , KD), (2.3)

where GCD means the Greatest Common Divisor.
As shown in [10], if KM and KD are relatively prime and KD is odd, the TRNG output bit
rate is R = T−1Q = f0/KD and the sensitivity to jitter is S = ∆−1 = KD/T1. The output bit
rate and the sensitivity are closely related. Following relationships between parameters of the
PLL-TRNG can be observed:
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• to increase R and S, f0 should be as high as possible,

• to increase R, KD should be as low as possible,

• to increase S, KM should be as high as possible.

From a One-PLL to a Two-PLL TRNG Design

In some technologies, condition (2.2) cannot be fulfilled using a single PLL. In this case, two
PLLs connected in series or in parallel can be used to increase the bit rate and the sensitivity
to jitter by increasing the multiplication and division factors (see the top panel and the bottom
panel in Fig. 2.4, respectively). Although the effect of increasing the final multiplication and

   DFF Decimator
(XOR-ing KD samples)

   clkin    clk1

   clk0

 f1  = f0

KM

 KD

   DFF

Raw random 
signalDecimator

(XOR-ing KD samples)

   clkin PLL0 PLL1

PLL1

PLL0

   clk1

   clk0

   KM  = KM1 ⋅  KM0  

   KD  = KD1  ⋅  KD0  

   KM  = KM1  ⋅  KD0  

   KD  = KD1  ⋅  KM0  

Raw random 
signal

Figure 2.4: PLL-TRNG using two PLLs in series or in parallel

division factors is similar in both configurations of the PLL-TRNG, they differ significantly in
the size of the exploited jitter [11]. In the cascaded connection of the two PPLs (top panel in
Fig. 2.4), the jitter introduced by PLL0 is filtered out by PLL1. This is clearly not the case in
the parallel configuration. Therefore, the parallel configuration of the PLL-TRNG is preferable
and will be used in our design.

Measurement of the Tracking Jitter of the PLL

Thanks to the use of the PLL itself, the jitter at the PLL output, which is used as a source of
randomness, can be easily quantified. The principle is presented in Fig. 2.5, which depicts the
accumulation of reordered KD samples obtained at the DFF output from Fig. 2.2.
We recall that f1 = f0

KM

KD
= f0

5
7
, therefore TQ = T0 ·KD = T1 ·KM = 7T0 = 5T1. To observe the

jitter outside the device, we first acquire the bitstream obtained at the output of the flip-flop.
Next, we reorder samples (bits) in the bitstream in each period TQ following the formula:

j = (i ·KM)modKD. (2.4)

Finally, we accumulate N times KD samples in the memory (for illustration, N = 2 in Fig. 2.5,
but in reality N = 255). It can be seen in the bottom panel of Fig. 2.5 that by reordering
the samples using Eq. (2.4), we remove the pattern caused by the relationship between the
frequencies of clk0 and clk1 and we can thus observe the form of the sampled signal (clk1). The
peak-to-peak size of the jitter observed during the time t = N ·KD · T0 is proportional to the
number of samples occurring at least once and less than N times (red dots in Fig. 2.5).
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  kth period TQ 

   f1 = f0

KM

 KD

   clk1

   clk0

   q

Recall: frequency relationship:

  (k +1)th period TQ 

   DFF

D
                Q
 clk

   clkin
PLL

   clk1

   clk0

Accumulator
of K

D
 samples 

+ memory

  kth period TQ  (reordered) 
0 1 2 3 4 5 6

  (k +1)th period TQ (reordered) 

0
1

0
1

0
1
2

  Accumulated period TQ 

   i 0 1 2 3 4 5 6 0 1 2 3 4 5 6

j →

Σ ↑

   j  = (i K
M
) mod K

D

K
D
 samples of each period T

Q
 are 

reordered using the formula:
0 3 6 2 5 1 4i →

5

7

   q

Figure 2.5: Principle enabling external observation of the jitter and its embedded measurement
– number of unstable samples (red samples in the bottom panel) is proportional to the jitter

The main advantage of the method is that it can be easily implemented inside the logic device.
While it is necessary that the PLL output is sampled internally, reordering, accumulation and
processing of samples can be done outside the device. We will use this possibility to study the
timing of clocks inside the device.

PLL-TRNG with Higher Entropy Rate

In this section, we propose a modified PLL-based RNG with a higher entropy rate. In the
generator, k flip-flops sample k clock signals (k PLL outputs) having a phase difference of
180/k degrees. The outputs of flip-flops are XOR-ed and the obtained binary signal is used
as an input signal for dedicated tests and for the decimator, which serves as a randomness
harvesting block.
A simplified version of this kind of generator for k = 2 is presented in Fig. 2.6. The PLL has
two clock outputs (clk10 and clk11) having the same frequency and a phase difference of 90
degrees. Using k PLL output clock signals with different phases we increase the number of
unstable samples and thus the entropy rate at the output. Note that the number of clocks must
be chosen so that at any time, only one of k flip-flops will sample the input clock signal near
its edge (rising or falling). This is quite easy to obtain.

PLL

(KM, KD)

clk0

DFF

clk10

Decimator

(XOR-ing KD samples)

DFF
q10

q 11

Raw binary 

signal

Internal or external   

jitter quantification

clk11

Figure 2.6: PLL-TRNG configuration with higher entropy rate and a possibility of external
observation and internal quantification of the jitter (by using the output of the XOR gate)
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HECTOR Demonstrator 1 PLL-TRNG Implemented in Cyclone V FPGA

The final version of the TRNG implemented in Demonstrator 1 in Cyclone V FPGA uses the
differential jitter between two PLLs as a source of randomness. It is depicted in Fig. 2.7.
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clk10
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oscillator

clk0PLL0

(KM0, KD0)

Altera Cyclone V FPGA

clk11 Decimator

(KD)

Error vector
Total Failure
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256-bit
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SSI 

Controller

Alarm (LVDS)

SSI_tx

SSI_rx

SSI_clk

Mux_sel

Data (LVDS)

Data_clk (LVDS)

Figure 2.7: Block diagram of the PLL-TRNG design implemented in Cyclone V FPGA

The two PLLs are connected in parallel in order to increase the targeted differential jitter.
PLL1 generates two clocks (k = 2) with a phase difference of 180/2 = 90 degrees. These clock
signals are sampled in two flip-flops on rising edges of the clk0 clock signal. Outputs of flip-
flops are XOR-ed together to get a decimator input signal. The decimator (a 1-bit counter) is
incremented each time this signal is equal to one during KD rising edges of the clk0 clock signal
(during one period TQ). After each period TQ the decimator value is saved in a 256-bit output
buffer and the decimator is reset.
Since the coefficients of the two PLLs are set in such a way that the entropy rate per bit
at decimator output is higher than required by the AIS 31 standard, the algorithmic post-
processing is not needed.
The cryptographic post-processing is implemented in the Microsemi SmartFusion2 device, which
controls Demonstrator 1 and which ensures data acquisition, post-processing and data interface
with the host PC (not depicted in Fig. 2.7).
The error messages from the functional tests (e.g. PLLs not locked) and statistical tests (e.g.
the total entropy failure and failure of Online tests) form an error vector, which is sent to the
control interface of the RNG that can be reached from the HECTOR motherboard. If any of
these tests fails, the Alarm is triggered, causing an interrupt condition in the control SoC.

PLL-TRNG Design Rationale

In this section, we present the design rationale of the proposed RNG, its blocks and functions.

Source of randomness The source of randomness in the proposed PLL-TRNG is the dif-
ferential jitter (dynamic difference in phases) between clock signals generated in two PLLs
connected in parallel as presented in Fig 2.7.
Figure 2.8 depicts the configuration of two PLL blocks as sources of randomness. PLL0 has
multiplication and division factors KM0 = 37, KD0 = 24, respectively. PLL1 has multiplication
and division factors KM1 = 19, KD1 = 5, respectively. The final multiplication and division
factors of the PLL-TRNG are thus KM = 456, KD = 185. The reference clock frequency clk0 is
192 MHz and the jittery clock frequency clk1 is 475 MHz. This gives the bit rate of 1.04 Mbits/s
at generator output, as required.
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Both PLLs use asynchronous reset inputs. They can be restarted, for example, if the total
failure alarm occurs. The PLL-TRNG output is allowed only if the two PLLs are locked. This
is detected by the ‘locked’ PLL output signal. If the PLL locking fails, the corresponding error
flag in the TRNG error vector is triggered.

PLL1

(KM1, KD1)
clkin

clk10

Quartz oscillator 

Si531FC

125 MHz

clk0

PLL0

(KM0, KD0)

Altera Cyclone V FPGA (5CEBA4F17C8N)

clk11

locked1

locked0

areset

areset

refclk

refclk

reset

Figure 2.8: Configuration of two PLLs as sources of randomness

Digitization mechanism and generation of the raw random bitstream A simplified
schematic diagram of the digitization mechanism and generation of random bitstream is de-
picted in Fig. 2.9. Two PLL1 output clock signals (clk10 and clk11) shifted by 90 ◦ are sampled
in the first couple of flip-flops (DFF00 to DFF01) on the rising edges of the clock signal clk0.

clk0

       Decimator

        (KD)

DFF01

DFF00

DFF1clk11

clk10

reset

ena

Counter

of  samples

    (0 : (KD – 1))

sreset

tq_end

DFF2

ena
raw_data

dff_xor

rnd_rdy

clk0

Figure 2.9: Schematics of the digitization mechanism
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Post-processing of the raw random signal The entropy rate at RNG output depends on
the size of the jitter and on the final size of multiplication and division factors (KM and KD,
respectively). These factors are chosen in such a way, that the entropy rate per bit of the raw
random binary signal (signal raw data) is higher than 0.997 (the rate required by AIS 31 [13]).
Therefore, any special post-processing algorithm is not needed and consequently not used. This
value of the entropy rate is verified continuously and thus guaranteed by the online test.
For security reasons, the raw random binary signal is post-processed using a cryptographic
post-processing algorithm of security level DRG.3. The architecture of the cryptographic post-
processing block is described in Section 2.3.3.

Total failure test and online tests As explained at the beginning of the subsection, the
source of randomness is the differential jitter between clock signals clk0 and clk1i. For the
correct operation of the PLL-TRNG, the frequency ratio of the two clock signals generated by
two PLLs must be maintained. The source of randomness can totally fail if any of the following
conditions is fulfilled:

1. input clock clkin from Fig. 2.8 is missing or not running (e.g. the oscillator does not
oscillate),

2. at least one of two PLLs from Fig. 2.8 is not working properly (e.g. it is not locked) or
not running at all,

3. one of the sampler stages (DFF0i, the XOR gate, or DFF1 from Figure 2.9) does not work
properly.

If Condition 1 is fulfilled, Condition 2 is fulfilled, too. Therefore, Conditions 1 and 2 are verified
by observing the locked signal of the two PLLs. If any of the sampler stages does not work
properly, the decimator input does not have the expected behavior (it does not feature an
almost regular pattern determined by the relationship between clock frequencies – the regular
pattern should be impacted just randomly by a few of random samples), but it can:

1. be stuck to a constant value (one or zero),

2. feature a perfectly regular pattern without any random bits.

These two kinds of behavior will cause a total entropy failure of the PLL-TRNG and must be
detected very fast.
The differential jitter can be evaluated internally based on the principle presented in Fig. 2.5 –
the differential jitter and thus entropy rate is proportional to the number of unstable samples.
The entropy rate per bit of the raw binary signal depends on the number of random events
appearing during one period TQ and on the position of random samples regarding the reference
clock signal clk0. If the jittery clock edge appears exactly on the rising edge of the reference
clock, the corresponding sample features a maximum entropy.
Consequently, we propose to evaluate two parameters, P1 and P2:

• P1 – number of accumulated samples with value Aj ∈ (Trmin;Trmax) = (32; 224),

• P2 =
1

N2

KD−1∑
j=0

Aj(N − Aj).
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Note that the parameter P1 is proportional to the size of the jitter (number of unstable samples
during each period TQ) and the parameter P2 depends on the number of unstable samples and
their position regarding the rising edge of the reference clock signal.
Figure 2.10 depicts the schematic diagram of the embedded statistical tests (Total failure and
Online tests) dedicated to the PLL-TRNG, which are based on the computation of parameters
P1 and P2 and their comparison with thresholds Tri determined from the stochastic model and
the required size of the jitter needed to obtain sufficient entropy rate at generator output.
First, KD samples of the dff xor signal are accumulated in the embedded memory during N
periods TQ. Then, parameters P1 and P2 are computed from accumulated samples: a 10-bit
counter counts how many of KD samples are between thresholds Trmax and Trmin to obtain
parameter P1. To simplify computations, values Trmax and Trmin are chosen to be representable
in 8 bits: Trmax = 7/8 · 256 = 224(10) =E0(16) and Trmin = 1/8 · 256 = 32(10) = 20(16). Finally,
an 8x8-bit multiplier computes values Aj(N − Aj), which are then accumulated in a 20-bit
accumulator/adder to get parameter P2.
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0 ÷ KD-1

Accum.
memory

1024 x 8
Input

address
Output
address

Input
data'0'

'0'

Output
data

8
8 8

10

Compar.
Trmax
Trmin

10-bit
accum.
adder

Multipl.
memory
A

j
(1 -A

j 
)

256 x 13

Period
counter
0 ÷ 255

20-bit
accum.
adder

Compar.
TrP1 = 8

Compar.
TrP2 = 138

Online test 
T1 alarm

Online test 
T2 alarm

8
1

13
20

10

Total failure & 
Online tests Compar.

TrP1 = 0

  TOT test 
  T0 alarm

dff_xor

clk
0

Figure 2.10: Schematic diagram of the PLL-TRNG dedicated embedded tests

If P1 is equal to zero (i.e. no accumulated sample Aj is in interval Aj ∈ (Trmin;Trmax)), the
total failure alarm T0 is triggered. If P1 < TrP1 = 3, the size of the jitter is not sufficient and
the Online test alarm T1 is triggered. Finally, if P2 < TrP2 = 43068/256 = 168, the entropy
rate is not sufficient and the Online test alarm T2 is triggered. Thresholds TrP1 and TrP2 are
conservative values obtained from the stochastic model, which ensure minimum entropy rate
per bit of 0.997 at the output of the TRNG.

Embedded tests and error messages The following security critical warnings (error mes-
sages) are sent by the PLL-TRNG core:

• E0 : PLL0 not locked

• E1 : PLL1 not locked

• E2 : Entropy total failure (P1 = 0)

• E3 : Online test T1 alarm (P1 < 3)

• E4 : Online test T2 alarm (P2 < 168)
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Output interface TRNG control and output interface is divided in two parts (see Fig. 2.11):

• Fast serial data and alarm output,

• Slow serial control input/output.

raw_data

dff_xor

clk0

256-bit

Buffer

data (LVDS)

data_clk (LVDS)

state(7) alarm (LVDS) 

state(63:0)
Par2ser

ssi_tx

ctrl(63:0)
Ser2par

ssi_rx

ssi_clk 

Simple serial interface (SSI)

mux_sel

Fast data interface

1

0

Figure 2.11: TRNG control and output interface

Two kinds of signals can be output via the fast data interface. To ensure high speed data
transfers, these signals use the low voltage differential signaling (LVDS) technology:

• High-speed output of the DFF1 flip-flop from Figure 2.9 (192.7 Mbits/s)

• Raw random bitstream (1.04 MB/s)

The high-speed output of the DFF1 flip-flop (signal dff xor) can be used to verify the duty cycle
and the form of rising and falling edges of the sampled signal, and uniformity of distribution of
samples.
The alarm signal can be used as interrupt request for the system on chip implemented in the
control circuitry.

The TRNG is controlled using the synchronous serial interface (SSI) managed by the control
device. The serial control input/output is clocked at 1 MHz by the ssi clk signal. The applica-
tion software can read the 64-bit state (state(63:0)) of the PLL-TRNG via the motherboard.
The role of individual state bits is described in Table 2.1.

2.3.2 Secure DC-based Generator of the Raw Random Bitstream

Principle

The principle of a TRNG utilizing delay chains for entropy extraction was proposed in [17].
The Delay-Chain based TRNG (DC TRNG) uses jitter accumulated in a free-running ring
oscillator as a source of randomness. The role of the delay chain is to sample the output of the
ring oscillator using very high timing resolution (approximately 17 ps on a Xilinx Spartan-6
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Table 2.1: PLL-TRNG state bits

Bits Parameter Description
S(63 : 48) Version 16-bit version number
S(47 : 5) Reserved Not used in the current version
S(4) Error E4 Online test T2 failure
S(3) Error E3 Online test T1 failure
S(2) Error E2 Total failure T0 alarm
S(1) Error E1 PLL1 not locked
S(0) Error E0 PLL0 not locked

Figure 2.12: DC-based TRNG

FPGA). The data sampled by the delay chain is a digital representation of the waveform of the
ring-oscillator output signal.
The block diagram of the DC TRNG is shown in Figure 2.12. The output Osc of the entropy
source (free-running ring oscillator) is connected to a delay line consisting ofm serially connected
delay buffers. The output of each buffer connects to a flip flop. These m flip-flops contain a
register that is sampled by a signal clkA. This signal is obtained by down-sampling the reference
clock signal provided by an on-board quartz oscillator. The down-sampling factor is a design
parameter that is chosen to allow for a sufficient jitter accumulation time. The output of the
register is connected to a priority encoder which encodes it into a single output bit.
The source of randomness in the DC-TRNG is the jitter accumulated in the free-running ring
oscillator. Due to the white-noise sources that are present in all electronic circuits, the frequency
of the free-running ring oscillator is not stable. Timing positions of the RO output signal edges,
relative to the reference clock become more uncertain over time. The variance of this timing
uncertainty is proportional to the jitter accumulation time (the period of the sampling signal
clkA).
Figure 2.13 shows an example of the waveform signals and the register data. At the rising
edge of clkA, the data from the delay chain are captured in the register. The register value
corresponds to the Osc signal values in the previous half period. This time period contains
at least one signal edge. The exact position of this edge is not predictable by any adversary
because it is influenced by the noise in the oscillator. The most likely region of the signal edge is
highlighted in gray and the distribution is shown at the bottom of Fig. 2.13. The exact position
of this edge is captured in the register and encoded in the priority encoder. The neighboring
positions are encoded using different bit values. The probability of generating a bit value 1
can be computed by integrating the parts of the distribution that are indicated in gray. Higher
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Figure 2.13: Example of the DC-TRNG waveforms of relevant signals.

variance of the accumulated jitter (achieved by allowing higher jitter accumulation time), as
well as the higher timing resolution (lower tstep) both result in a more balanced probabilities of
0 and 1 and thereby in higher entropy.

Design parameters The design parameters of the DC-TRNG are:

• TA – period of signal clkA. This period is equal to the jitter accumulation time. Higher TA
results in higher entropy per bit of the raw data at the price of the reduced throughput.

• T0 – period of the free-running ring oscillator.

• m – the number of elements in the delay chain. For a correct operation of the DC-TRNG
it is essential that the condition

m >
T0

2 · tstep
, (2.5)

is fulfilled. This condition guarantees that a signal edge is detected in every sample.

HECTOR Demonstrator 1 DC-TRNG Implemented in Spartan-6 FPGA

The implementation of DC-TRNG on Spartan-6 FGPA for Demonstrator 1 uses the jitter from
a free-running ring oscillator as the source of randomness. The block diagram of the DC-TRNG
design is shown in Fig. 2.14.
The ring oscillator is sampled by a tapped delay chain with a timing resolution around 17ps. A
system clock sourced by a quartz oscillator is used for circuit synchronization and triggering the
sampling. The sampled result is converted to a raw binary bit using a priority encoder. Raw
binary bits can be sent to the mother board directly for offline evaluations. Raw binary bits
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Figure 2.14: Block diagram of the DC-TRNG design

are compressed using a parity filter to improve entropy-per-bit. Outputs of the free-running
oscillator and the tapped delay chain are evaluated for total failure tests. Two types of online
tests are applied to the binary bits.
Two frequency dividers are used to generate different clock signals. The frequency divider 1 is
chosen based on the jitter accumulation time. The divider 2 is used to generate data-clk signal
when the post-processing is applied.

DC-TRNG Building Blocks

Source of randomness The source of randomness in DC-TRNG is the accumulated thermal
jitter in the free-running ring oscillator implemented using a single look-up table (LUT), i.e.
timing uncertainty of the ring oscillator signal edge position relative to the reference clock
signal.

Digitization Mechanism and Generation of the Raw Random Bitstream Digitization
part of DC-TRNG is composed of two parts:

• fast delay-chain line, which is connected to the output of the ring oscillator and performs
time-to-digital conversion of the jittery signal edge.

• entropy extractor, which is used to detect the position of the jittery ring oscillator signal
edge in the delay-chain line and to output one bit, corresponding to the parity of the
delay-chain stage position.

Post-processing of the Raw Random Bits Raw random bits produced by the entropy
extractor are statistically enhanced by using XOR post-processing, a compression technique
that consists of xoring together (adding modulo 2) several consecutive raw random bits. The
entropy rate of the raw random bits depends on the amount of accumulated jitter in the ring
oscillator and the time step of the delay-chain (i.e. time step of time-to-digital conversion).
Time step of the delay-chain depends on the platform on which DC-TRNG is implemented,
while the amount of accumulated jitter can be increased (and consequently the entropy rate)
by enabling oscillations of the ring oscillator for the longer period of time.

HECTOR D4.1 Page 15 of 74



D4.1 - Demonstrator Specification

0

0

LUT

NAND2

Priority encoder 
Tapped

delay chains

CLK

Free-running

oscillator

Enable

Raw_data  

Figure 2.15: Schematics of the digital noise source.

Total Failure of the Source of Entropy and Its Detection In order to check whether
the entropy source is totally break down, total failure tests are designed in this implementation.
The source of randomness can totally fail if:

• the free-running ring oscillator is missing or not working,

• there is no edge sampled by the tapped delay chain.

We implement two total failure tests. The first total failure test is designed to detect whether
the free-running ring oscillator is toggling or not. An edge detector is connected to the output
of the ring oscillator. The edge detector is reset every two cycles. It triggers an alarm if the
input signal has not changed.
The second total failure test is designed to generate an alarm if there is no edge sampled in
the tapped delay chain. During normal operation, all taps cannot be all zeros nor all ones.
Therefore, the equality of all captured values in the delay chain is used to generate the alarm
signal.

Online Tests DC-TRNG contains two statistical tests that detect long-term weaknesses in
the generated raw data bitstream. These two tests have different false-alarm rates. On-line test
1 (Sensitive test) has a higher false-alarm rate but is more efficient in detecting attacks. On
line test 2 (Robust test) is less efficient in detecting attacks but it is more robust against false
alarms.
On-line test 1 operates on a sequence of 512 consecutive raw bits. The test statistics is the
count N111 of the template 111 in the sequence. This statistics is computed on-the-fly using
a 9-bit counter. After every 512 bits, the counter value is compared with the pre-computed
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(empirically determined) upper and lower boundaries. If the counter exceeds these boundaries,
an alarm signal is generated. The false alarm rate of this test is 1%.
On-line test 2 also operates on a sequence of 512 consecutive raw bits. The test statistics C1 is
computed as follows:

C1 =
511∑
i=1

bi ⊕ bi+1 , (2.6)

where bi denotes the i-th bit of the sequence. This statistics is computed using an xor gate and a
9-bit counter. After every 512 bits, value C1 is computed and compared with the pre-computed
boundaries. The alarm signal is generated if the counter value exceeds these boundaries. Af-
terwards, the counter is reset and the next 512 bits are tested. The false alarm rate of this test
is 10−6.

DC-TRNG Status Messages Similar to the PLL-TRNG, a SSI is used to control and check
the status of DC-TRNG. The application software can read the 64-bit state (state(63:0)) of the
DC-TRNG via the motherboard. The role of individual state bits is described in Table 2.2.

Table 2.2: DC-TRNG state bits
Bits Parameter Description

S(63:48) Version 16-bit version number
S(47:4) Reserved Not used in the current version
S(3) Error E3 On-line test 2 alarmed
S(2) Error E2 On-line test 1 alarmed
S(1) Error E1 No edge sampled in tapped delay chain
S(0) Error E0 Ring oscillator stop resonating

2.3.3 Cryptographic Post-processing

Besides the algorithmic post-processing which is facultative depending on the reached entropy
rate per output bit, the generator which should be compliant with AIS 31, level PTG.3, must
post-process cryptographically the generated raw random numbers. The HECTOR consortium
agreed upon using a pseudo-random number generator called here CTR-DRBG derived from the
CTR-DRBG defined in [4] as a cryptographic post-processing of the PTRNG. The generator uses
the approved algorithm AES128 as a cryptographic primitive. This section will provide details
about specification of the CTR-DRBG as a part of Demonstrator 1. The general construction of
the DRNG adapts the approach described in [4] with the specific parameters choices outlined
in Table 2.3. The different algorithms will be described in the following sections.

State of the DRNG & Internal Processes

Internal state S The internal state of the DRNG is shown in figure 2.1 and is composed of a
value V updated every time 128 bits of output is produced, a key K updated by Instantiate

or Generate calls.

S = {0, 1}128 × {0, 1}128, I = {0, 1}256, R = {0, 1}t·128

where t is the parameter of the Generate call
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Security parameter (λ) 128
Block length (blockLen) 128

Counter field bit length (ctrLen) 32
Key length (keyLen) 128

Min. entropy 256
Seed length (seedLen) 256
Entropy input length 256 (Instanciate and Generate)

Personalization string length 0
Additional input length 0

Number of bits per requests t · 128, t ∈ N
Max. number of requests between entropy introduction 1

Table 2.3: Parameters of the DRNG

Listing 2.1: DRNG internal state

typedef struct InternalState_t {

//V is a 128 bits value

uint8_t V[16];

//K is a 128 bits value

uint8_t K[16];

} DRNGInternalState_t;

Internal state Update function ϕ : S × I → S The Update process updates the internal
state of the DRNG by mixing in the data presented as input. The detailed process is outlined
in algorithm 1. ϕ is one way even if D is known by the adversary as the updated internal state

Algorithm 1: Update process

Input: K, |K| = 128, V, |V | = 128, D, |D| = 256.
Result: updated values for K and V
begin

Vfixed ←− V0 . . . V95
Vctr ←− V96 . . . V127
B0 ←− D0 . . . D127

B1 ←− D128 . . . D255

V ←− B1 ⊕ AES128K (Vfixed|| (Vctr + 2 (mod 232)))
K ←− B0 ⊕ AES128K (Vfixed|| (Vctr + 1 (mod 232)))
return(K,V)

is indistinguishable from a random string for an adversary unable to attack AES.

Instantiating the DRNG

The Instantiate process initiates the DRNG before any data can be extracted from it. The
detailed process is outlined in algorithm 2.
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Algorithm 2: Instantiate process

Result: status, (K,V )
begin

(status, entropyInput)←− TRNG(128)
if status 6= SUCCESS then

return status, (0128, 0128, 0)

(status,N)←− TRNG(128)
if status 6= SUCCESS then

return (status, 0128, 0128, 0)

S ←− entropyInput||N
(K,V )←− Update(0128, 0128, S)
return(SUCCESS,K,V)

Uninstantiating the DRNG

The Uninstantiate process clears the DRNG state – no data should be requested from the
DRNG after the process has been called. The detailed process is outlined in algorithm 3.

Algorithm 3: Uninstantiate process

Input: K, |K| = 128, V, |V | = 128
Result: Cleared (K,V )
begin

K ←− 0128

V ←− 0128

return (K,V )

Generating Pseudorandom Bits Using the DRNG

The Generate process produces pseudo random bits and updates the state of the DRNG. For
efficiency reasons, the generate process only produces multiples of 128 bits of pseudo random
bits. The detailed process is outlined in algorithm 4. ψ is one way as B is indistinguishable
from a random string for an adversary unable to attack AES.
pA is the distribution of the internal state after instantiation or generation and it depends on
the 256 bits of seed introduced through the entropy source. The internal state of this DRNG
meets the necessary entropy condition to resist high-potential attacks.

Conformance with Requirements of the DRG.3 class

In this section we will show that the instantiation of CTR-DRBG as defined above is conformant to
the requirements of the RNG class DRG.3 defined in the AIS 20/31 [13]. The reader can match
the different processes described above to the figure 2.16 to follow the justifications below.

DRG.3.1 The internal state of our instanciation of CTR-DRBG RNG requires a computational
effort equivalent to 2256 elementary operations to determine the state and uses a PTRNG of
class PTG.2 as random source.
Guessing the future pair K,V is sufficient to generate outputs.
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Algorithm 4: Generate process

Input: K, |K| = 128, V, |V | = 128, t.
Result: status, B, updated (K,V )
begin

(status, S)←− TRNG(256)
if status 6= SUCCESS then

return status, 0t·128, (K,V )

(K,V )←− Update(K,V, S)
for i ∈ {0, . . . , t− 1} do

Vfixed ←− V0 . . . V95
Vctr ←− V96 . . . V127
Bi ←− AES128K (Vfixed|| (Vctr + i (mod 232)))

(K,V )←− Update(K,V, 0256)
status←− SUCCESS
return status,B, (K,V )

Figure 2.16: DRG.3 RNG class (from [13])

DRG.3.2 The RNG provides forward secrecy.
Predicting future outputs of the RNG requires to predict the outputs of the entropy source.

DRG.3.3 The RNG provides backward secrecy even if the current internal state is known.
The call to Update at the end of the Generate process prevents that a compromise in the future
could reveal information about past outputs.

DRG.3.4 The RNG generates output for which 2 strings of bit length 128 are mutually
different with overwhelming probability.
Within a call to the Generate processes, the probability is actually 1. Across calls to this
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process and using classical assumptions on AES the probability of collisions grows as the one of
a random mapping.

DRG.3.5 Statistical test suites cannot practically distinguish the random numbers from out-
put sequences of an ideal RNG. The random numbers must pass test procedure A.
Those tests will be performed during the evaluation of Demonstrator 1.

2.4 Hardware Platform

The design of the Demonstrator 1 hardware platform is based on the one of the HECTOR
evaluation platform, which uses one FPGA to implement the control unit and another one to
implement the source of the raw random signal. In comparison with the HECTOR evaluation
platform the Demonstrator 1 platform features also the following characteristics:

• two different FPGAs are used to implement two different PTRNG,

• the whole hardware platform is properly shielded,

• the platform includes a real-time counter (RTC) device,

• the platform includes additional visualisation elements.

One of the advantages of the proposed design is its easy migration from the HECTOR evaluation
platform to the Demonstrator 1 platform due to similarity of both hardware platforms. Two
different FPGAs are used to implement the sources of raw random bitstreams. The first one is
Altera Cyclone V and the second one is Xilinx Spartan 6 FPGA. Both generators are connected
to the main control unit using the same data interface as the HECTOR evaluation platform:
both use four LVDS and three single-ended wires.
Demonstrator 1 features external synchronous 512 Mb (64 MB) low-power DDR SDRAM mem-
ory. It provides sufficient space for saving huge TRNG data in real time.
Contrary to HECTOR evaluation boards, Demonstrator 1 will not use SD cards to save gener-
ated data, because random data should be always “fresh”. Storing generated random data on
the non-volatile SD cards could allow the data to be manipulated by the attacker. Only one
SD will be connected to the USB hub – the application software can be stored in this card if
needed.
The user is supposed to use Demonstrator 1 with a PC as an external USB device, or he can
integrate it to the computer rack, using an internal USB cable and a disk drive power connector.

2.4.1 USB Connectivity

Demonstrator 1 will be implemented on a single PCB board. The board will feature two
USB connectors, one for an external cable and another one to connect Demonstrator 1 to the
motherboard of the PC. One of the two connectors will be selected by a USB switch, depending
on the selected power supply (Fig. 2.18).
The USB connection between the SmartFusion2 FPGA device and the PC is ensured by two
USB communication channels. The first one (exploiting the FTDI device FT232RL), which is
a virtual COM port, is designed to control Demonstrator 1 by a simple UART protocol. The
main advantage of this data interface is that it does not need any special software driver – the
device is supported by all existing operating systems.
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Figure 2.17: Demonstrator 1 hardware platform.

The second USB channel is designed to provide reliable and fast transfers of random data using
the USB mass storage class interface. This interface is natively supported by all operating
systems, too. This USB channel is realized using the USB physical layer circuit (USB3300),
which creates an intermediate interface between the main SmartFusion2 device and the USB
differential wires.
Both USB ports are connected to the USB HUB (USB2640). The selected USB HUB includes
an integrated Micro SD card reader with a mass storage class interface, which is suitable for
saving the application dedicated software.

PC USB 
connector

 

USB HUB
USB2640

USB - UART 
converter
FT232RL

USB physical 
layer

USB2640

SD card

SmartFusion 2 
SoC

2x UART
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5x Control

Differential 
signaling

USB connector  

USB switch
FSUSB42

Figure 2.18: USB devices block diagram

2.4.2 Optical Signalization Elements

In practice, it is important to optically indicate the current state of the demonstrator. Several
LEDs will be used to do it:

• Total failure of the PLL-TRNG implemented in Cyclone V FPGA (red LED),
• Total failure of the DC-TRNG implemented in Spartan 6 FPGA (red LED),
• Failure of the Online test in the PLL-TRNG (red LED),
• Failure of the Online test in the DC-TRNG (red LED),
• Failure of the Startup test in SmartFusion2 (red LED),
• TRNG data ready (green LED),
• UART Tx (green LED),
• UART Rx (green LED),
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• Power ready (green LED).

2.4.3 Power Supplies

The whole device will be powered from two different connectors (Fig. 2.19). One connector
dedicated to an external power supply adapter, and one for a disk drive power cable (available
in common PCs). The demonstrator will be powered by default by 12V, but alternatively, a
different power supply voltage can be used.
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3.3V

FPGA
Altera

Cyclone V1.1V
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Other
peripherals
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1.2V

- Linear regulator
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Figure 2.19: Demonstrator 1 power supply diagram.

The demonstrator will feature a complex power supply system. The linear voltage regulators
will be used for the noise-critical parts due to their low noise feature. The switching power
regulator will be used for the rest of the device, to ensure high power efficiency. The proper
isolation filters will be used to reduce the possibility of side channel attacks. Selected power
regulators will also have an option to be controlled from the control device. Indeed, shutting
down some external devices can reduce EM emissions, but also overall temperature of the
device.

2.4.4 Mechanical Design

The device will have dimensions of a 3.5-inch hard-disk (Fig. 2.20) to ensure its easy integration
in the computers (e.g. in PCs or servers).
The printed circuit board (PCB) will be embedded in a special aluminium case, in order to:

• facilitate the heat dissipation,

• protect the device against a mechanical damage,

• create an EM shielding of the PCB sections,
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Figure 2.20: Design of the Demo 1 mechanical structure.

• protect the device against disassembling.

The case will feature separated rooms. The PCB will have detached areas for these rooms (Fig.
2.21). The physical separation will reduce the influence between FPGAs and stabilize their
environmental conditions. The case will also allow to use an epoxy mass to make disassembling
of the device more difficult.

Figure 2.21: Mechanical design cross section of the Demo 1 - front view (on the left), side view
(on the right)

2.5 Scope of Evaluation

Demonstrator 1 could serve in the future as a high-speed random number generator, exploiting
one of two physical random number generators: a PLL-TRNG or a DC TRNG. This kind of
generators could find their typical application in personalization centers where high volumes
of high quality random numbers are required to initialize a large quantity of security devices
such as smart cards. An attacker that would like to attack the system would try to weaken
the generator, i.e. to reduce the entropy rate at generator output. This could be feasible only
by physical attacks, which would typically need the attacker to have a physical access to the
device (see Section 5.3).
Due to the targeted use-case, it is supposed that Demonstrator 1 will always operate in a
controlled environment. As a result, potential attackers will not have physical access to gen-
erator, not even remotely through its interfaces. This means that deliberate attacks aiming at
manipulating the generated random numbers are not in the scope of the security evaluation.
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However, it is important that Demonstrator 1 will be robust regarding changes in environmen-
tal conditions and that it will feature long-term stability regarding the quality of generated
numbers. The security evaluation will therefore focus on compliance of the design to AIS20/31,
verification of the quality of the TRNG output, observation of entropy margins during variation
of the TRNG operational conditions and verification if the behavior of the TRNG is in line
with the stochastic model.

HECTOR D4.1 Page 25 of 74



D4.1 - Demonstrator Specification

2.6 Conformance to Requirements

The following table shows the current status of Demonstrator 1 requirements defined in D 1.2.
All the requirements which need to be justified on the final hardware and software will be
reported in the upcomming deliverables D4.2 and D4.3.

Requirement Current status Remark
Functional requirements

Ready after 3 seconds < 500 ms –
Output data rate over 1Mb/s 1.04 Mb/s –
Secure DRBG DRG.3 Implemented See 2.3.3

Hardware requirements
Embedded processor on control
FPGA

Compliant ARM M3 embedded in
SmartFusion 2 FPGA

USB connectivity on control
FPGA

Compliant USB Mass Storage De-
vice interface used

Over 15k logic cells on control
FPGA

27k logic cells –

Over 10k logic cells on ”other”
FPGAs

49k and 14k logic cells –

Total USB consumption smaller
than 5W

To verify on the final hard-
ware

–

Data interface faster than 2Mb/s To verify on the final hard-
ware

–

Security requirements
TRNG is AIS20/31 PTG.3 com-
pliant

Compliant See 2.3.1

TRNG require less than 300mW To verify on the final hard-
ware

–

TRNG startup tests require less
than 3 second to complete

< 500 ms –
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Chapter 3

Demonstrator 2: Secure Portable USB
Data Storage

3.1 Motivation

USB flash drive, USB drive, USB stick, thumb drive, pen drive, jump drive, flash-drive or USB
memory are popular means of data storage, back-up and transfer. Such a device may contain
sensitive personal information and/or company assets in digital form, e.g. bank statements,
legal documents, commercial treaties, sales and billing documents, source codes, technical doc-
umentation or other intellectual property. The risk for the information to be compromised
is high when commuting, travelling, or just leaving the drive unattended in a car or a hotel
room. To enhance privacy one has to use a secure solution. Such a product then contains
not only a flash memory and a USB interface but also a hardware encryptor. Vendors offer
secure USB portable devices where data are protected by approved cryptographic algorithms,
e.g. AES. However weaknesses have been discovered in such secure solutions. There is also a
lack of trusted secure storage solutions engineered and manufactured in EU.
Another three reasons for Demonstrator 2 are to show that the proposed cryptographic primi-
tives, algorithms and protocols can be successfully applied in a high-end real-world data security
application, in which user and device authentication is sufficiently strong and secure at least
in the lost and found scenario. TRNG compliant with AIS 20/31 PTG.2 introduces the
online test which immediately detects and stops any defect in random data generation. Au-
thenticated encryption ensures confidentiality and integrity of the data in a single operation.
Physically unclonable function binds the encrypted data to the particular piece of hard-
ware. All of aforementioned principles are brand new, as it is the study of their behaviour and
impact in the real world.
Demonstrator 2 was also inspired by the MICRONIC hardware platform available already
at the beginning of the project.

3.2 Functional Description

Demonstrator 2 is a secure portable USB storage. It is a personal, single-user device. It protects
the data stored on it while being at rest. It requires the user to authenticate before allowing
access to the data. It is powered from the USB bus without the need of an external power
source.
The device is either empty, deleted or enrolled. It is empty just after manufacturing. After
that, the user enrolls it. After being enrolled, the embedded non-volatile memory (eNVM)
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contains helper data, encrypted key and their authentication tag. The device is deleted on
user request or after too many unsuccessful tries to enter the passphrase, then the data in the
eNVM and on the SD card are zeroized.
The user activates his enrolled device by entering the passphrase. The key is decrypted,
authenticated and loaded to the designated register. The crypto block is then prepared to
encrypt data on sector writings and decrypt data on sector readings. The device is ready to be
mounted by the operating system.

3.2.1 Two-factor Authentication Protocol

The HECTOR project partners designed a two-factor authentication protocol which allows
authentication of the user, the device and the helper data, and the authenticated encryption of
the data encryption key. The protocol uses the sponge based authenticated encryption primitive
ASCON-128a (ASCON12,8-128-128).

0. During the preparation phase the helper data is generated and securely stored. See
figure 3.1.

(a) User enters passphrase PP , which is decoded from ASCII to create helper key KW =
f(PP ), f : {A− Z, a− z, 0− 9,@,&}22 → {0, 1}128;

(b) PUF generates response R and extractor computes helper data W ;

(c) TRNG generates nonce NW ;

(d) Crypto core is initialized with KW and NW ;

(e) Authentication of W takes place;

(f) NW , W and tag(W ) are stored in the eNVM.

1. During the enrollment phase the data encryption key is generated and securely stored.
See figure 3.2.

(a) User enters passphrase PP ′, which is decoded to create helper key K ′W = f(PP ′);

(b) eNVM outputs NW , W and tag(W );

(c) Crypto core is initialized with K ′W and NW ; Verification of W takes place; Stored
tag(W ) and freshly computed tag′(W ) authentication codes are compared;

(d) If authentication succeds PUF generates response and using helper data W corrects
R′;

(e) Helper key is masked with PUF response to create device key K ′d = K ′W
⊕

R′;

(f) TRNG generates data encryption key Ka and nonce Na;

(g) Crypto core is initialized with K ′d and Na;

(h) Authenticated encryption of Ka takes place;

(i) Na, enc(Ka) and tag(Ka) are stored in the eNVM.

2. During the activation phase the helper data integrity is verified and data encryption key
is reconstructed and verified. (See Figure 3.3.)

(a) User enters passphrase PP ′′, which is decoded to create helper key K ′′W = f(PP ′′);

(b) eNVM outputs NW , W and tag(W );
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Figure 3.1: Demonstrator 2 helper data generation.
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Figure 3.2: Demonstrator 2 enrollment.
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Figure 3.3: Demonstrator 2 activation.
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(c) Crypto core is initialized with K ′′W and NW ; Verification of W takes place; Stored
tag(W ) and freshly computed tag′′(W ) authentication codes are compared;

(d) If authentication succeds PUF generates response and using helper data W corrects
R′′;

(e) Helper key is masked with PUF response to create device key K ′′d = K ′′W
⊕

R′′;

(f) eNVM outputs Na, enc(Ka) and tag(Ka);

(g) Crypto core is initialized with K ′′d and Na;

(h) Verified decryption of enc(Ka) takes place; Stored tag(Ka) and freshly computed
tag′′(Ka) authentication codes are compared; If authentication succedes the device
is ready else an error is reported.

3.2.2 Data Encryption Process

All data on the SD card are encrypted per sector. Handling each sector as a separate message
allows random access to the sectors. Authenticated encryption does not preserve the data size
as it needs to store a nonce and an authentication tag for each sector. That extra data will be
stored in reserved space on the SD card along with the encrypted user data.
Note that despite the sector on the SD card has a fixed size of 512 bytes, the demonstrator may
work with multiple sized sectors and so lower the overhead.

1. When writing data to the device each sector is encrypted and sent to the SD card along
with a unique Nonce and an authentication tag. See figure 3.4.

(a) MSS USB controller sends data SectorX;

(b) From TRNG output and write counter is NonceX derived;

(c) Crypto core is initialized with Ka and NonceX;

(d) Authenticated encryption of SectorX without any associated data takes place;

(e) NonceX, enc(SectorX) and tag(SectorX) are stored in the SD card.

2. When reading data from the device each sector is decrypted and USB controller is then
allowed to read the data. See figure 3.5.

(a) NonceX is read form the SD card. Crypto core is initialized with Ka and NonceX;

(b) Data enc(SectorX) are read from the SD card and decrypted.

(c) Freshly computed authentication value tag′(SectorX) is compared to the one stored
on the SD card tag(SectorX).

(d) If the tags are equal, the USB controller reads the data SectorX else an error is
reported.

3.3 Building Blocks

3.3.1 Passphrase

A random sampled 128-bit number is encoded into the user passphrase. The random number
will be used as the helper key and after masking by the PUF response as the device key, see
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Figure 3.4: Demonstrator 2 data encryption.
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Figure 3.5: Demonstrator 2 data decryption.

HECTOR D4.1 Page 34 of 74



D4.1 - Demonstrator Specification

Subsection 3.2.1. The passphrase is a string of 22 characters in the alphabet A = [A− Z, a−
z, 0− 9,@,&], since |A| = 64.
The complete alphabet the device recognizes contains also the additional special characters
:!? |., ∗+ /.

3.3.2 Physically Unclonable Function

TERO-PUF

The Transient Effect Ring Oscillator (TERO) corresponds to a very specific configuration of
an RS latch with additional gates and two inputs featuring the same voltage [16]. The TERO
is an electronic circuit composed of an even number of inverters that oscillates temporarily. A
typical TERO cell is depicted in Figure 3.6.

Ctrl

Out

Figure 3.6: A typical TERO cell

It is composed of two AND gates and two inverter branches. Due to manufacturing process
variabilities, by propagating two events at the same time in the loop, one event will be faster
than the other and collision of both events will stop the oscillation. The duty cycle of oscillating
output varies over time and after a certain number of oscillations, reaches the rate of either
0% or 100%. In this configuration, we compare the number of oscillations of two identically
implemented TEROs. The first use of the TERO was introduced by Varchola et al. [18] for
True Random Number Generator applications. Later Bossuet et al. [6] proposed a new PUF
principle based on TEROs. The TERO PUF generates this response by comparing the number
of oscillations of TERO cells. The TERO PUF is configured as presented in Figure 3.7.

The implemented PUF is composed of 128 TERO cells, two counters and a subtractor. Cells
are divided in two blocks, A and B of 64 cells each. To avoid correlation, a cell of the block
A is always compared to a cell of the block B and is used only once. One cell per block is
selected using two demultiplexers. Two multiplexers are placed right after the cell blocks in
order to drive the correct cell outputs to the clock counters. The cell selection is usually called
a challenge. Compared TERO cells are triggered at the same time. We compare the number
of oscillations at the output of two selected cells using a subtractor. We extract two bits per
challenge. Counters and activation time of the control signal need to be sized according to
the mean number of oscillations of the TERO cells. In our case, counters feature 10 bits and
activation time is set to 2µs. The strobe signal indicates that the output of the subtractor is
ready to be read. The protocol to generate a 2-bits response to a challenge is the following:

1. Select the couple of TERO cells to be compared

2. Activate the TERO cells (ctrl signal = 1) for 2µs

3. Deactivate the TERO cells
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4. Generate a strobe (which means subtractor output is ready to be stored)

5. Reset counters
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Figure 3.7: TERO PUF architecture

This is done for all implemented TEROs and the resulting bits are concatenated to form a
128-bits response. The response is stored in a shift register.

PUF characteristics and error-correction

Error correcting codes are implemented, whenever messages have to be reliably transmitted via
a noisy channel. In the context of PUFs, error correcting codes are implemented to ensure that
a secret can be successfully reproduced. The basic idea of error correcting codes is to enlarge
the signal length by redundant information appended to the information part of the message,
to improve the probability that the original message can be reconstructed from the possibly
corrupted data received. On the sender side, there is an encoder, whose job is to take the
message and to process it to produce the coded bits that are then sent over the channel. The
receiver has a decoder whose job is to take the received (coded) bits and to produce its best
estimate of the message. The encoder-decoder procedures together constitute channel coding.
Good channel codes provide error correction capabilities that reduce the bit error rate consid-
erably, or in the best case, entirely correct the errors which occurred. [3]

In summary, transmitted information is assumed to be correct on the receiver side, but in fact,
the signal will be superimposed by noise with a specific bit error probability pb. Table 3.1 shows
first evaluation results of the TERO PUF. Their importance and impact will be discussed in
the following sections.
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bias: 54.15%
avg. bit error probability pb: 5.15%

max. bit error probability pb: 19.00%

Table 3.1: First evaluations on the characteristics of the TERO PUF

Assuming a given bit error probability of pb we claim a failure error rate of Pfail ≤ 10−4 within
Demonstrator 2 and 3. The failure error rate describes the probability that a string of n bits
has more than t errors and is given by:

Pfail =
n∑

i=t+1

(
n

i

)
pib(1− pb)n−i = 1−

t∑
i=0

(
n

i

)
pib(1− pb)n−i (3.1)

Another limitation given in the requirements of Deliverable D1.2 is that for the PUF implemen-
tation only 5k logic cells should be used on the demonstrator platform. Related to the TERO
PUF this equals a number of approximately 128 bit output bits of one PUF response. For the
building block of authenticated encryption a 32 bit full entropy key is expected from the PUF
block. Therefore, the post-processing needs to be calibrated based on these requirements.

Aiming for full entropy, we need to first check for the characteristics of the TERO PUF output.
It is desirable for PUFs to have a fractional Hamming weight of close to 0.5 since this indicates
that the PUF response does not show a preference for a certain value and is therewith un-
biased. Maes et al. also mentioned in [14] that bias is the most common cause for PUFs to
show non-randomness.
There are different approaches to extrapolate from the Hamming weight to the entropy, see
Def. 1 and Def. 2, where one is a more conservative and therefore less practical approach than
the other:

Definition 1. Min-Entropy: The min-entropy is the most conservative approach to indicate
the amount of randomness present in the response and is therefore desired to be close to 1. We
define p as the probability of a 1 or a 0 showing up in a string of bits, pi ≥ 0,

∑2
i=1 pi = 1.

H∞ =
1

N

N∑
n=1

− log max
i
pi (3.2)

Definition 2. Binary entropy function: The binary entropy function calculates the entropy
of a Bernoulli process1. In comparison to the min-entropy, the binary entropy function takes
a single real number as a parameter whereas the min-entropy takes a distribution or random
variable.

Hb = −p log p− (1− p) log(1− p) (3.3)

In addition, the efficiency of the helper data algorithm in use (Kang’s scheme, see Figure 3.9)
needs to be taken into account. It is determined by the min-entropy loss which is assumed
to be the universal (n − k) bound for a binary block code [n, k, d] for constructing a secure
PUF-based key generator, see Equation 3.4. In [14] it is shown, that the (n − k) lower bound

1finite or infinite sequence of a binary random variable
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even becomes negative for too high bias, making it absolutely clear that this is a pessimistic
lower bound. In [7] Delvaux et al. derive new considerable tighter bounds for PUF-induced
distributions that suffer from bias or spatial correlations.

` = H∞ · n+ k − n (3.4)

For the TERO PUF in the context of the HECTOR demonstrator, we are limited to approx.
128 output bits. To improve the quality of the output bits and to ensure that we meet the
given requirements, the situation calls for special measures:

Entropy estimation: For high-end security products, it is recommended going for the
conservative approach of Min-Entropy. In HECTOR for demonstration purposes, the
security requirements are eased, using the binary entropy function to extrapolate the
entropy. Table 3.2 shows the impact of bias deviating from 50% and the difference for the
resulting entropy in the PUF response for both approaches. Table 3.3 shows that the left
over entropy after post-processing with three different codes is still sufficient even though
that bias is present.

Majority voting: In [2], a method is described to receive the most often occurring values
for a PUF sample. With this, we would be able to define a much more stable reference
response. As a consequence, this will decrease the bit error probability to reasonable
values. This is matter of ongoing work.

Dark bit selection: The idea of bit selection schemes is to discard less reliable bits before
the PUF response will be further processed. This will also decrease the bit error rate
significantly, but unfortunately, at the expense of source bits. Again, these evaluations
are currently ongoing.

PUF type no. responses bias Hb H∞

TERO 100 50.00% 1.00 1.00

TERO 100 54.15% 0.99 0.89

Table 3.2: Calculation of min-entropy and binary entropy function based on bias

bias Hb code left over entropyHb

54.15% 0.99 G(23,12,7) 58(60)

54.15% 0.99 BCH(127,64,21) 62(64)

54.15% 0.99 BCH(127,43,29) 36(43)

Table 3.3: Left over entropy depending on Hb (Golay is processed in 5 loops)

As can be seen in Figure 3.8, the restrictions in terms of size (length of usable PUF response),
stability and the required failure error rate of Pfail ≤ 10−4 challenge us to bring the bit error
rate down to an area of 2−3%. We will apply measures described above (majority voting, dark
bit selection) to achieve the best possible trade-off. Those measures will be put in place during
the integration of demonstrator 2 (and demonstrator 3) and reflected in deliverable D4.2.
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Figure 3.8: Failure rate Pfail as a function of different codes and bit error probabilities

Kang’s scheme The idea described in [12] represents a very interesting alternative to the
commonly used code-offset construction. Any error correcting code with an efficient syndrome
decoding algorithm can be used in this scheme. One advantages of Kang compared to the
conventional code-offset construction is that less helper data (N-K bits) need to be stored.
In addition, there is no TRNG required during the enrollment procedure (see left part of
Figure 3.9).
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Figure 3.9: Fuzzy extractor based on codes with systematic encoding (Kang’s scheme [12])

3.3.3 Authenticated Encryption with Associated Data

The sponge based authenticated encryption primitive ASCON-128a is used for both key re-
construction and data encryption. The only requirement put on the use of the algorithm is
uniqueness of the (key,Nonce) pairs. The ASCON instance is controlled by a state machine
to process (encrypt/decrypt) 32 data blocks of 128 bits (512 byte sector), see listings 3.1 and
3.2. For optimization reasons the process may span over multiple sectors of 512 bytes. Encryp-
tion/decryption starts using a per-write unique Nonce and computes an authentication tag on
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the data. The Nonces and the tags will be stored along with the encrypted user data on the
SD card.

Listing 3.1: ASCON core interface.

entity ascon_core is

generic (

UNROLLED_ROUNDS : integer := 1;

STATE_WORD_SIZE : integer := 64;

KEY_SIZE : integer := 128;

DATA_BLOCK_SIZE : integer := 128;

ROUNDS_A : integer := 12;

ROUNDS_B : integer := 8);

port (

ClkxCI : in std_logic;

RstxRBI : in std_logic;

KeyxDI : in std_logic_vector(KEY_SIZE-1 downto 0);

DataxDI : in std_logic_vector(DATA_BLOCK_SIZE-1 downto 0);

DataxDO : out std_logic_vector(DATA_BLOCK_SIZE-1 downto 0);

TagxDO : out std_logic_vector(DATA_BLOCK_SIZE-1 downto 0);

DP_WriteNoncexSI : in std_logic;

CP_InitxSI : in std_logic;

CP_AssociatexSI : in std_logic;

CP_EncryptxSI : in std_logic;

CP_DecryptxSI : in std_logic;

CP_FinalEncryptxSI : in std_logic;

CP_FinalDecryptxSI : in std_logic;

CP_FinalAssociatexSI : in std_logic;

CP_DonexSO : out std_logic);

end entity ascon_core;

Listing 3.2: ASCON core control example.

process(PRSTN, PCLK)

begin

if(PRSTN = ’0’)then

state <= state_idle;

task <= task_none;

elsif(rising_edge(PCLK)) then

case state is

when state_idle =>

case command_from_arm is

when X"00" =>

state <= state_idle;

task <= task_none;

when X"C1" =>

state <= state_initialize;

task <= task_sector_encrypt;
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when X"C2" =>

state <= state_initialize;

task <= task_sector_decrypt;

when others =>

state <= state_error;

task <= task_error;

end case;

block_counter <= (others => ’0’);

when state_initialize =>

if ascon_done = ’1’ then

if task = task_sector_encrypt or

task = task_sector_decrypt then

state <= state_associateFinal;

else

state <= state_associate;

end if;

end if;

when state_associate =>

state <= state_associate_wait;

when state_associate_wait =>

state <= state_associateFinal;

when state_associateFinal =>

state <= state_wait_for_data;

when state_wait_for_data =>

if (task = task_sector_encrypt and

DATA_FROM_USB_RDY = ’1’) or

(task = task_sector_decrypt and

DATA_FROM_CARD_RDY = ’1’) then

state <= state_encrypt;

end if;

when state_encrypt =>

state <= state_encrypt_wait;

when state_encrypt_wait =>

if ascon_done = ’1’ then

if block_counter(4 downto 0) = "11111" then

state <= state_finalize;

else

state <= state_wait_for_data;

end if;

block_counter <= block_counter + 1;

end if;

when state_finalize =>

state <= state_finalize_wait;
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when state_finalize_wait =>

if ascon_done = ’1’ then

state <= state_continue;

end if;

when state_continue =>

state <= state_initialize;

when others =>

state <= state_error;

end case;

end if;

end process;

ascon_init <= ’1’ when state = state_initialize else

’0’;

ascon_associate <= ’1’ when state = state_associate else

’0’;

ascon_encrypt <= ’1’ when (state = state_encrypt or

state = state_encrypt_wait) and

task = task_sector_encrypt else

’0’;

ascon_decrypt <= ’1’ when (state = state_encrypt or

state = state_encrypt_wait) and

task = task_sector_decrypt else

’0’;

ascon_finalEncrypt <= ’1’ when (state = state_finalize or

state = state_finalize_wait) and

task = task_sector_encrypt else

’0’;

ascon_finalDecrypt <= ’1’ when (state = state_finalize or

state = state_finalize_wait) and

task = task_sector_decrypt else

’0’;

ascon_finalAssociate <= ’1’ when state = state_associateFinal else

’0’;

3.3.4 PLL-based TRNG with Embedded Tests

Demonstrator 2 features a physical true random number generator (PTRNG), which uses dif-
ferential jitter between clock generated in two PLLs as a source of randomness. According to
the deliverable D1.2, the RNG in Demonstrator 2 must fulfill security level PTG.2.
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Principle

The principle and the architecture of the PTRNG implemented in Demonstrator 2 is the same
as that of the PTRNG implemented in Demonstrator 1 and described in Section 2.3.1.
Just two differences exist between the two TRNG designs. First, instead of using an external
quartz oscillator as a source of input clock signal clk in, Demonstrator 2 uses RC oscillator,
which is hardwired inside the SmartFusion2 SoC and which oscillates at a frequency of about
50 MHz as input clock generator. Consequently, multiplication and division factors of both
PLL are adapted to this different frequency.
The second difference is related to the output circuitry: generated data and state register do not
need to be output – they can be accessed inside the device by the embedded ARM processor.

HECTOR Demonstrator 2 PLL-TRNG Implemented in SmartFusion 2 FPGA

The final version of the TRNG implemented in Demonstrator 2 in SmartFusion2 SoC is depicted
in Fig. 3.10.
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Figure 3.10: Block diagram of the PLL-TRNG design implemented in SmartFusion2 FPGA

The two PLLs are connected in parallel in order to increase the targeted differential jitter.
PLL1 generates the clock signal clk1 which is sampled in a flip-flop on rising edges of the clk0
clock signal generated in PLL0. Output of the flip-flop goes to the decimator. The decimator
(a 1-bit counter) is incremented each time this signal is equal to one during KD rising edges of
the clk0 clock signal (during one period TQ). After each period TQ the decimator value (one
bit) is saved in a 256-bit output buffer and the decimator is reset.
The input signal of both PLLs is generated in the RC oscillator embedded in the SmartFusion
2 FPGA. The oscillator oscillates at a frequency of approximately 50 MHz. PLL0 has multi-
plication and division factors KM0 = 31, KD0 = 12, respectively. PLL1 has multiplication and
division factors KM1 = 37, KD1 = 7, respectively. The final multiplication and division factors
of the PLL-TRNG are thus KM = 444, KD = 217. The frequency of the reference clock clk0 is
129.17 MHz and the frequency of the jittery clock clk1 is 264.28 MHz. This gives the bit rate
of 600 kbits/s at generator output, which is much higher than required.
Since the coefficients of the two PLLs are set in such a way that the entropy rate per bit
at decimator output is higher than required by the AIS 31 standard, the algorithmic post-
processing is not needed.
The PTRNG implemented in Demonstrator 2 uses the same Total failure test (test T0 ) and
Online tests (tests T1 and T2 ) as the generator in Demonstrator 1 (see Section 2.3.1).
The error messages from the functional tests (e.g. PLLs not locked) and statistical tests (e.g.
the total entropy failure and failure of Online tests) form an error vector, which is saved in a

HECTOR D4.1 Page 43 of 74



D4.1 - Demonstrator Specification

state register that can be reached from the embedded ARM processor. If any of these tests
fails, the Alarm is triggered, causing an interrupt condition in the control SoC.

3.4 Design Rationale

Demonstrator 2 as a portable secure USB storage a) communicates via USB and b) stores
c) encrypted data on an SD card. The device interfaces on the red (plain) side the host
computer via USB and on the black (encrypted) side the SD card. USB mass storage class is
natively supported across the modern operating systems, and so, there is no need for additional
proprietary software for the host computer.
SD card is used as a data storage. It is an autonomous, reliable device well defined in a series of
specifications. It is equipped with a wear leveling mechanism to stretch the write cycle limit of
the media. SD cards support, in the case of Demonstrator 2 encrypted, data back-up through
disk imaging software.
Microsemi Smartfusion2 System on Chip (SoC) interfaces the USB and encrypts and decrypts
the stored data. SoC is a low power, reconfigurable FPGA device with a 32-bit ARM processor.
SoC is quite documented and supported with a design tools suite.
All data on the SD card are encrypted, protected by a strong cryptographic algorithm, thus
resistant against off-line attacks. In the scope of the lost and found (stolen) scenario the solution
has to be secure against the brute force attacks and no sensitive data must be stored on the
device in plain.
A secure authentication protocol for both the device and the user has to be implemented to
ensure that no critical data like confidential keys and passwords will be saved in the device in
plain.
As Demonstrator 2 after being activated allows full access to the data, it is expected that the
user activates and uses the device only in proven and controlled environment, i.e. eliminated
possibility of interception, scanned against malware. This prerequisite leaves the side channel
attacks out of scope.
The user authenticates to the device by entering a passphrase. The passphrase never leaves the
USB device as it is typed on the built-in keyboard and displayed on the built-in display. Hence
the device is immune against key-logger attacks. The self-generated keys and user passphrase
will be protected against cloning through PUFs using a protocol consisting of two separate
phases:
When at rest, on the move, lost or stolen the data on the removable media are securely protected
by a strong authenticated encryption algorithm. Without knowledge of user’s high entropy
passphrase either the SD card or the whole device is useless for the attacker.b
Thus, when the device is powered-off or is not activated, it does not contain any key or security
critical information in plain. Since the objective is to bind sensitive information to a device,
we will focus here on weak PUFs and not consider strong PUFs. Additionally, the derivation
of the user passphrase could reuse primitives from the post-processing step of the PUFs.
The encryption mechanism must support random access to sectors.

3.5 Hardware Platform

The hardware of Demonstrator 2 is based on MICRONIC’s hardware which was developed at
the beginning of the HECTOR project. The existing hardware accelerated the development of
the final HECTOR Demonstrator 2 and 3 platform – the secure hand-held device.
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The designed hardware is very similar to the HECTOR evaluation platform, but in order to
meet the USB power requirements and to fit in a small form factor, the demonstrator consists
only of the necessary components. See Figure 3.11. Therefore, we developed the resources for
easy integration and evaluation of the demonstrator on the existing evaluation platform.
A closer description of the demonstrator components as well as differences from the evaluation
platform are given in the following chapters.

SoC FPGA
Microsemi 

SmartFusion 2

USB
Physical layer

Micro USB
connector

LCD

Keyboard

Buzzer

Vibro

RGB LED

SD card

Power
management

USB
Physical layer
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Figure 3.11: Demonstrator 2 and 3 hardware platform.

3.5.1 Microsemi SmartFusion2

Demonstrator 2 is based on Microsemi SmartFusion2 (SF2), a system on chip (SoC), which
integrates a flash-based FPGA fabric and an 166 MHz ARM Cortex-M3 processor. There were
several reasons for the SF2 choice, rather than similar Altera or Xilinx SoC devices: a) The
main advantage of the SF2 is especially its low power consumption. This is required from a USB
device which is bus powered. b) The SF2 also features a very simple ARM-M3 processor, fairly
less complex than ARM-A9 in the Altera or Xilinx devices. c) The integrated configuration
memory ensures integrity of the device and eliminates the need for an additional external
memory.

3.5.2 USB Connectivity

The physical layer of the USB stack is governed by an external chip Microchip USB3300. The
same chip is used in the evaluation platform. It is connected directly to the USB bus wires
on one side and on the other side it contacts the USB Low Pin Count Interface (ULPI) of the
SF2. The other layers of the USB stack are controlled by USB hardware controller and bare
metal MSS USB driver by Microsemi. The driver is configured to act as USB Mass storage
class device. The class is natively supported across the common operating systems without
the need of installing any additional driver or special software. The USB MSS API consists of
these nine call-back functions:

Listing 3.3: USB driver API.

uint8_t* usb_media_inquiry(uint8_t lun, uint32_t *len);

uint8_t usb_media_init (uint8_t lun);
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Figure 3.12: Microcontroller subsystem. From [15].

Figure 3.13: USB OTG hardware controller. From [15].
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uint8_t usb_media_get_capacity(uint8_t lun,

uint32_t *no_of_blocks, uint32_t *block_size);

uint8_t usb_media_is_ready(uint8_t lun);

uint8_t usb_media_is_write_protected(uint8_t lun);

uint32_t usb_media_read(uint8_t lun, uint8_t **buf, uint32_t lba, uint32_t len);

uint8_t* usb_media_acquire_write_buf(uint8_t lun, uint32_t lba, uint32_t *len);

uint32_t usb_media_write_ready(uint8_t lun, uint32_t lba, uint32_t len);

uint8_t usb_media_get_max_lun(void);

Reading data: The function pointed by the usb media read function pointer is called with
the logical block address and the length as parameters when the host wants to read the data
from the storage medium. Application must provide a buffer and its length which can be sent
to the host.

Writing data: The function pointed by the usb media acquire write buffer function pointer
is called with the logical block address as a parameter when the host wants to write data into
the storage medium. The function pointed by the usb media write ready function pointer is
called with the logical block address and the length as parameters when the data to be written
is received from the host and is ready to be written on the storage medium. The data is stored
in the previously provided write buffer using usb media acquire write buffer.

3.5.3 SD Card

A Secure Digital (SDHC/SDXC) card is connected to the FPGA fabric via general purpose
input/output pins. The FPGA communicates with the card in the high speed mode with 3.3V
signalling at frequency up to 50 MHz allowing a theoretical throughput up to 25 MB/sec [1].
The FPGA generates the clock for the bus and uses one bidirectional serial signal for commands
and four bidirectional serial signals for 4-bit data tuples.

Listing 3.4: SD card interface.

entity sdc_if is

port (

CLK : in std_logic ;

RSTN : in std_logic ;

-- interface to APB (control)

PSELx : in std_logic ;

PADDR : in std_logic_vector( 31 downto 0);

PENABLE : in std_logic ;

PRDATA : out std_logic_vector( 31 downto 0);

PWDATA : in std_logic_vector( 31 downto 0);

PWRITE : in std_logic ;

PREADY : out std_logic ;

-- interface to BLACK_FIFO (data)

BLACK_FIFO_TX_Q : in std_logic_vector(31 downto 0);

BLACK_FIFO_TX_RE : out std_logic ;

BLACK_FIFO_TX_RDCNT : in std_logic_vector( 9 downto 0);
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BLACK_FIFO_RX_D : out std_logic_vector(31 downto 0);

BLACK_FIFO_RX_WE : out std_logic ;

BLACK_FIFO_RX_RDCNT : in std_logic_vector(10 downto 0);

-- SD card I/O signals

SD_CLK : out std_logic ;

SD_CMD : inout std_logic ;

SD_DAT : inout std_logic_vector( 3 downto 0)

);

end sdc_if;

The atomic portion of data of the SD card is a 512-byte sector accompanied by a 16-bit cyclic
redundancy code (CRC). The CRC is computed on the transferred data in the SD card interface
implemented in the FPGA fabric. The interface is controlled by two final state machines, one
for command and one for data. The data come in/go out through the black FIFO directly
from/to the encryptor, so, the path is separated from the command one, as the commands
come in plain from the ARM via the AMBA bus.
The speed of data transfer to/from an SD card depends on how often the data flow is interrupted.
The seek time of successive sectors is significantly reduced comparing to random access. The
data state machine used in Demonstrator 2 is optimized to achieve the highest possible speed.

3.5.4 Keyboard and Display

The user interface of Demonstrator 2 consists of a built-in touch capacitive keyboard and
a non-illuminated display. The display indicates the state of the device and the result of the
operations made by the user. The full QWERTY keyboard allows control of the device including
also entering the passphrase.

3.5.5 Indication Elements

Demonstrator 2 is equipped with three additional indication elements apart from the display.
It has a) multi-color LED, b) beeper and c) vibrating buzzer. The LED instantly shows the
state of the device (i.e. deleted, enrolled, activated), flashes on data transfer and together with
the two other indicators signals keystrokes. Each of the indicators can be turned off for a quiet
operation.

3.5.6 Power Supply

The power supply is another crucial part of the Demonstrator 2. The device is powered from
the bus. USB version 2.0 specification limits the current consumption of a device up to five
units (1 unit is 100mA). To meet this specification the whole device was carefully designed to
reduce the number of necessary components. See Figure 3.14.
The 5V power supply from USB is stepped down to 3.3V by a linear regulator. It ensures
stable and low noise power supply for the PLL, crucial for the reliable PLL-based true random
generator inside. The other, 1.2V switching, regulator has high efficiency which results to low
current consumption. The rest of the components are powered from the same line as PLL,
isolated by proper filters.
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Figure 3.14: Power supply of the Demonstrator 2 and 3.

3.5.7 Mechanical Design

The mechanical design is not directly a part of the HECTOR project, but it is necessary for
the demonstrator to operate and provides some of the security features.
The device is housed in a special compact case, which ensures integrity and functionality. See
Figure 3.15. The case consists of a custom milled aluminium lid and a top panel featuring
keyboard, display and the other indication elements.

Figure 3.15: Demonstrator 2 and 3 HW platform.

The panel is made of several layers: from the top layer with keyboard description and its
electronics, through the interlayers, down to the bottom layer where the display connects to
the main printed circuit board. See Figure 3.16.
The aluminium lid attenuates EM emissions, provides good heat dissipation and makes the
whole device mechanically robust. The lid also forms a barrier for potting the electronic as-
sembly in epoxy which prevents the device from disassembling and provides tamper evidence.
The dimensions of the device are similar to the dimensions of a common smart phone. That
form factor allows integration of a full QWERTY keyboard for a comfortable entry of complex
passphrases.
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Figure 3.16: Layers of the Demonstrator 2 device.

3.6 Scope of the Evaluation

The secure USB storage device contains encrypted data that can be unlocked by supplying a
user passphrase code through the built-in demonstrator keyboard. In principle USB storage
devices are physically controlled by the user of the device. Security is provided by the protection
of the device itself and by the fact that the owner is the only person that knows the passphrase.
For evaluation of a secure USB storage device it is common practice to use the so-called “Lost
and found” attack scenario. This means that the device must be capable to resist attacks to the
data at rest when it falls into wrong hands - without the passphrase to be known. Examples
are numerous by which high officials lose USB sticks while travelling. The Demonstrator 2 USB
storage device must protect data against this scenario. When found (or stolen), an attacker
can only try a limited number of passphrases before the device will permanently lock its data.
In practice an attacker can disassemble the storage device and try to extract information about
the cryptographic keys inside non-volatile memory, or obtain information that discloses the
passphrase. During this stage physical attacks on the device are in scope (see Section 5.3).
In rare cases more sophisticated attacks might be envisioned, such as a two-stage attack. It
must be noted that this is a scenario that has a high “James Bond” level and it is likely that
this will only be done at state level espionage. However, if the value of the information is such
high that it justifies this attack scenario, it is not likely that a USB device will be used as a
transfer medium.

1. During the first stage the storage device is temporarily stolen and modified with a bug that
aims to collect the passphrase. Typically a keyboard logger is installed that records the
key-presses while the legitimate user unlocks the device. After modification the device is
returned to the legitimate user. If the attack is done correctly, there is no visible evidence
that the device has been tampered with.

2. During the second stage the storage device is stolen again with the passphrase stored by
the bug. Using the passphrase, the device can be opened and all data copied.

Demonstrator 2 is able to resist against attacks using the “Lost and found” scenario. Once
found, an attacker can disassemble the device by any applicable means since it does not have
to be returned in good condition to the legitimate user. This means that the enclosure of
the demonstrator does not have to be tamper evident to protect against modification or bug
insertion.
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3.7 Conformance to Requirements

The following table shows the current status of Demonstrator 2 requirements defined in D 1.2.
All the requirements which need to be justified on the final hardware and software will be
reported in the upcomming deliverables D4.2 and D4.3.

Requirement Current status Remark
Required building blocks

TRNG block PLL-TRNG See 3.3.4
PUF block TERO-PUF See 3.3.2
Error correcting algorithm Several options See 3.3.2
Hash function (for the PUF and
passphrase derivation)

ASCON Used as the function
for key derivation
from the PUF and the
passphrase

Authenticated encryption algorithm ASCON See 3.3.3
Functional requirements & properties

Once powered on, the device requires
less than 3 seconds to reach a ready
state after which it can be used for its
intended purpose

To verify on the final
hardware

–

The device offers protection against
passive physical attacks (side channel
attacks)

Outside the scope See 3.6

The device offers protection against
key-logger attacks on the host PC

Compliant See 3.5.4

The device reveals no sensitive infor-
mation once powered off, in particular
no offline dictionary attacks is possible
on the user passphrase

Compliant See 3.3.1

The probability of any authentication
failure over the system life is lower
than 10−4

Pfail = 10−4 (influenced
by the applied error cor-
recting code and the re-
sulting bit error proba-
bility of the PUF)

See 3.3.2

Block level encryption s Compliant See 3.3.3
The speed at which data can be
read from the host PC must be at
least 2 MB/s

To verify on the final
hardware

–

The speed at which data can be writ-
ten by the host PC must be at least
2 MB/s

To verify on the final
hardware

–

The user does not have to install any
extra driver

USB Mass Storage used See 3.5.2

The device does not need any external
energy source, runs on power from the
USB port

To verify on the final
device

–
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Additional IVs & MACs is stored in
non-volatile memory

Nonces and tags will be
stored along with the
encrypted user data on
the SD card.

See 3.2.2

IV is provided by the TRNG Nonces will be derived
from TRNG and write
counter.

See 3.2.2

Requirements on hardware
Demonstrator 2 includes a display for
user interaction

Non-illuminated dis-
play included

See 3.5.4

Demonstrator 2 includes a keyboard
for user interaction

Capacitive keyboard in-
cluded

See 3.5.4

Demonstrator 2 includes at least one
flash memory device

One removable SD card
included

See 3.5.3

Demonstrator 2 limits EM emissions Aluminium case used See 3.5.7
Demonstrator 2 provides tamper evi-
dence

Possible potting with
epoxy

See 3.5.7

Demonstrator 2 is powered from a sin-
gle USB port

Compliant See 3.5.6

Requirements on the cryptographic primitives
The PUF requires less power than
20 mW

To verify on the final
hardware

–

The PUF requires less than 5k logic
cells to implement

< 4.5k See Deliverable 2.2

The failure rate of the PUF over the
system life is lower than 10−4

To verify on the final
hardware

–

TRNG complies with the Class PTG.2
AIS 20/31 requirements

Compliant See 3.3.4

TRNG achieves an output data rate
of at least 10 kbits/s

> 500 kbits/s –

TRNG block requires less than
100 mW

To verify on the final
hardware

–

TRNG occupies less than 2 k logic
cells

< 1 k –

The dedicated startup tests require
less than 1 second to complete

< 500 ms –

AE algorithm is protected against side
channel analysis

Outside the scope See 3.6

AE algorithm achieves a throughput
of at least 2 MB/s

To verify on the final
hardware

–

AE algorithm require less than 10 k
logic cells to implement

< 3k See Deliverable 3.2

AE algorithm is optimized for 512-
byte plaintexts

Compliant See 3.3.3
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Chapter 4

Demonstrator 3: Secure Messaging
Device

4.1 Motivation

Enabling the ability for users to communicate securely remains today one of the major use
cases of cryptography. Popular messaging applications such as Facebook Messenger, Whatsapp
or Apple iMessage are able to handle traffic load of several billions of messages everyday.
When one adds to that the volume of data sent via text message or emails, the importance of
protecting those communications becomes obvious. Users concerned with security can already
turn to PGP or S/MIME for email, or choose among the messaging apps the ones that claim to
cryptographically protect user messages. These solutions however are designed to run on top of
an operating system on commodity hardware (like a PC, a tablet or a phone) and cannot directly
make use of the hardware-aware cryptography primitives developed in the framework of the
HECTOR project. On the one hand the usage of the PUF coupled with user’s passphrase can be
used as a strong 2 factor authentication protocol that prevents an outsider from communicating
with a peer even if the whole device is compromised. On the other hand the use of sponge based
primitives dispenses from using ad hoc constructions to guarantee not only that messages are
confidential and authenticated but also that the whole stream of messages hasn’t been tampered
with (replay-protection, reorder-protection).
On top of being inspired by the MICRONIC hardware platform, the aim of Demonstrator 3 is
to demonstrate that the cryptographic primitives developed within HECTOR can successfully
be applied in high-end real-world data security applications in which user and device authen-
tication must be strong and confidential messages are both encrypted and authenticated.

4.2 Functional Description

In the following functional description the building blocks developed along the project are used
via the following notations :

• PUF () refers to the PUF principle described in Section 4.3.2

• Encode, Decode refers to the error correction scheme described in Section 4.3.2

• AEenc, AEdec, SE init, SEWrap, SEUnwrap refers to the authenticated encryption scheme
and the associated stream-encryption scheme described in Section 4.3.4
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• PP refers to the user passphrase described in Section 4.3.1

4.2.1 Initialization

The Initialization step is run with 2 devices, deviceA and deviceB, that have never been
turned on before. Both those devices are connected via USB to a SecureHost. At the end of
this phase both devices will be paired and they will be able to communicate over an untrusted
channel.

1. Connect deviceA and deviceB to SecureHost

2. deviceA and deviceB both execute the following :

(a) PP ←− TRNG(96) ;

(b) KPUF ||Mask ←− PUF () ;

(c) KPUF ||SKPUF
←− Encode(KPUF ) ;

(d) HD ←− SKPUF
⊕Mask ;

(e) (∅, THD)←− AEenc(PP, 0128, HD, ∅) ;

(f) R←− TRNG(128) ;

(g) Send R to SecureHost;

3. SecureHost executes the following

(a) receives RA from deviceA;

(b) receives RB from deviceB;

(c) Kcomm ←− H(RA||RB);

(d) Send Kcomm to deviceA;

(e) Send Kcomm to deviceB;

(f) Delete Kcomm ;

4. deviceA and deviceB both execute the following

(a) receives Kcomm from SecureHost;

(b) (Ccomm, Tcomm)←− AEenc(PP,KPUF , ∅, Kcomm) ;

(c) U ←− (HD,THD, Ccomm, Tcomm, 0, 0) ;

(d) U is stored in the eNVM.

4.2.2 Powering on the Device

The PowerOn step is run with a device connected via USB to an UntrustedHost. At the end
of this phase the device is on, unlocked and ready to communicate over an untrusted channel
with the device it was previously paired with.

1. Connect device to UntrustedHost

2. User inputs P̃P on device
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(a) Retrieve U from eNVM ;

(b) if U [4] > limit, delete U and reset ;

(c) s←− AEdec(P̃P , 0128, U [0], ∅, U [1]) ;

(d) if s = ⊥ then U [4]←− U [4] + 1, reset ;

(e) K̃PUF ||M̃ask ←− PUF () ;

(f) S̃KPUF
←− SKPUF

⊕Mask ⊕ M̃ask)

(g) K ′PUF ←− Decode(K̃PUF ||S̃KPUF
) ;

(h) K̃comm ←− AEdec(P̃P ,K ′PUF , ∅, U [2], U [3]) ;

(i) if K̃comm = ⊥ then U [4]←− U [4] + 1, reset ;

(j) U [4]←− 0

(k) Kcomm ←− K̃comm

(l) IVsyn ←− TRNG(128)

(m) (Csyn, Tsyn)←− AEenc(Kcomm, IV, 0x01||0x0015, U [5] + 1)

(n) U [5]←− U [5] + 1;

(o) U is stored in the eNVM.

3. Send (cmd, IVsyn, Csyn, Tsyn) to the peer.

4. Stream encryption initialization : SSE ←− SE init(Kcomm, U [5])

4.2.3 Receiving cmd Messages

Upon receiving a message of type cmd the device will proceed to update its internal state and
initialize a new stream encryption state.

1. Receive (cmd, IVsyn, Csyn, Tsyn) from the peer.

2. U5 ←− AEdec(Kcomm, IVsyn, 0x01||0x0015, Csyn, Tsyn) ;

3. if U5 = ⊥ then delete U , reset ;

4. if U5 6= U [5] + 1 then delete U , reset ;

5. U [5]←− U5;

6. Stream encryption initialization : SSE ←− SE init(Kcomm, U [5]).

4.2.4 Sending txt Message

The length of messages typed up by the User is counted in characters and is limited to 159
bytes. To avoid traffic analysis all messages are padded with 0x00 to 159 bytes. It is then
wrapped into the current stream encryption state and sent with the associated tag to the peer.

1. User provides a message msg, l = |msg| ;

2. M ←− msg||0x00159−l

3. (SSE , Ctxt, Ttxt)←− SEWrap(SSE , 0x00
16, l||M);

4. Send (txt, l, Ctxt, Ttxt) to the peer.
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4.2.5 Receiving txt Messages

Upon receiving a message of type txt the device will proceed to decrypt and authenticate the
message: if it is a valid message then it will be shown to the user, if not then the message will
be trashed and the device will be restarted to set up a new stream.

1. Receive (txt, l, Ctxt, Ttxt) from the peer.

2. (SSE , l||M)←− SEUnwrap(SSE , 0x00
16, Ctxt, Ttxt);

3. if l||M = ⊥ then delete reset ;

4. display the first l bytes of M to User

4.3 Building Blocks

4.3.1 Passphrase

The passphrase is a randomly chosen string of 16 characters in the alphabet A = [A − Z, a −
z, 0 − 9,@,&]. Since |A| = 64 we can claim that the user passphrase contributes 96 bits of
entropy.
The complete alphabet the device recognizes contains also the additional special characters
:!? |., ∗+ / as was the case in Section 3.3.1.

4.3.2 TERO PUF and Extractor

As the two-factor authentication protocol is the same for both Demonstrator 2 and Demonstra-
tor 3 we refer the reader to Section 3.3.2

4.3.3 PLL-based TRNG with Embedded Tests

As the two-factor authentication protocol is the same for both Demonstrator 2 and Demonstra-
tor 3 we refer the reader to Section 3.3.4

4.3.4 ASCON & SpongeWrap

ASCON The ASCON [8] specification describes a family of authenticated encryption designs
ASCONa,b − k − r where

• k is the key length, k ≤ 128;

• r is the “rate” otherwise understood as the data block size;

• a is the number of repetitions of the permutation p during the initialization and finalization
procedure;

• b is the number of repetitions of the permutation p during the processing of data.

Each family member is a pair of an authenticated encryption algorithm Ea,b,k,r and a decryption
algorithm Da,b,k,r. In the framework of Work Package 4 the consortium agreed on the use of a
instantiation dubbed “ASCON-128a” which is short for Ascon12,8−128−128. We chose in this
document to denote the corresponding encryption and decryption algorithms AEenc, AEdec.
The inputs for the authenticated encryption procedure AEenc are

HECTOR D4.1 Page 56 of 74



D4.1 - Demonstrator Specification

• the secret key K of 128 bits;

• the nonce N of 128 bits;

• the associated data A;

• the plaintext P .

The output of the authenticated encryption procedure is an authenticated ciphertext C of
exactly the same length as the plaintext P , and an authentication tag T of 128 bits, which
authenticates both A and P :

AEenc(K,N,A, P ) = (C, T )

The inputs for decryption and verification procedure AEdec are

• the secret key K of 128 bits;

• the nonce N of 128 bits;

• the associated data A;

• the ciphertext C;

• the tag T of 128 bits.

The output of the decryption and verification procedure is the plaintext P if the verification of
the tag is correct or ⊥ if the verification of the tag fails:

AEdec(K,N,A,C, T ) ∈ {P,⊥}

As one can read in the Section 4.2, in the framework of the work package WP4 AEAD is used
in 4 ways:

1. Integrity only mode to protect the authenticity of the helper data;

2. Authenticated encryption of the communication key Kcomm;

3. Authenticated encryption of the cmd messages;

4. Stream encryption of the messages exchanged within a session between the peers.

Integrity only In this case we use the ASCON block to only provide integrity of the helper
data before it is used by the PUF mechanism (see 3.3.2 for more details). The authenticated
encryption process is therefore done without plaintext. The key is the binary representation of
the ASCII user passphrase and is therefore 128 bits long while providing only 96 bits of security.
The nonce is set to 0128 as the process is run only once at device setup after having chosen the
user passphrase uniformly at random.

Kcomm protection In this case we use the ASCON block to protect the communication key
both in integrity and confidentiality. Being the element the densest in entropy we use the
passphrase as a key and the post-processed PUF response as an IV. If need be the PUF response
will be padded to fit into 128 bits. Such as the previous function this process is run only once
during the Initialization step and therefore does not require the use of an additional random
IV.
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Protection of cmd messages In this case we use the ASCON block to protect resynchro-
nization of devices after a tampering by the adversary or after reboot by sending the session
number protected both in integrity and confidentiality. Here a random (provided by the TRNG
block) IV is necessary and to avoid confusion between cmd messages and txt messages an
authenticated content type is added to the message.

Stream encryption In an analogical manner as the description of MonkeyWrap [5] we
describe here a process aiming at authenticating series of messages (with additional data). The
stream encryption process is a triplet of algorithm (SE init,SEWrap,SEUnwrap) The inputs for
the initialization procedure SE init are

• the secret key K of 128 bits;

• the nonce N of 128 bits.

The output of the initialization procedure is a state of 320 bits SSE :

SE init(K,N) = SSE

The inputs for the wrapping (authenticated encryption) procedure SEWrap are

• the state SSE of 320 bits;

• the associated data A;

• the plaintext P .

The output of the wrapping procedure is the updated value of the state SSE , an authenticated
ciphertext C of exactly the same length as the plaintext P , and an authentication tag T of 128
bits, which authenticates the whole sequences of messages:

SEWrap(SSE , A, P ) = (SSE , C, T )

The inputs for the unwrapping (authenticated decryption) procedure SEUnwrap are

• the state SSE of 320 bits ;

• the associated data C ;

• the tag T of 128 bits.

The output of the unwrapping procedure is the updated value of the state SSE and the plaintext
P if the verification of the tag is correct or ⊥ if the verification of the tag fails:

SEUnwrap(SSE , A, C, T ) ∈ {(SSE , P ) ,⊥}

In the following we describe how to make use of the ASCON hardware block described in
Section 4.3.5 to achieve stream encryption as described above. We assume access to the following
procedures that update the 320 bits internal state of ASCON implicitly.

• AEInit(K,N) = S, where K is a 128 bits key, N a 128 bits and S a 320 bits internal state;

• AESAD(A) = ∅, where A is a 128 bits block of associated data;
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• AESEncrypt(Pi) = Ci, where Pi is a 128 bits block of plaintext, Ci a 128 bits block of
ciphertext;

• AESLastEncrypt(∅) = T , where T is a 128 bits tag;

• AESDecrypt(Ci) = Pi, where Pi is a 128 bits block of plaintext, Ci a 128 bits block of
ciphertext;

• AESLastDecrypt(T ) ∈ {success,⊥}, where T is a 128 bits tag and the return value is success
if the tag verification succeeds and ⊥ otherwise.

Those procedures can be seen as trivial extensions from the provided hardware interface.
The Init procedure is shown in Algorithm 5.

Algorithm 5: SE init procedure

Input: K, |K| = 128, N, |N | = 128
begin

SSE ←− AEInit(K,N)
return SSE

We callm the message supplied by the user, l its length in bytes with the restriction that l ≤ 160,
m is padded with 0x00 to 159 bytes. Finally, we call M the 160 byte string l||m||0x00159−l and
Mi the i-th block of 16 bytes of M . The wrapping procedure is shown in Algorithm 6.

Algorithm 6: SEWrap procedure

Input: SSE ,M
begin

AESSE
AD (0x0016)

for i ∈ {0, . . . , 9} do

Ci ←− AESSE
Encrypt(Mi)

T ←− AESSE
LastEncrypt()

return (SSE , C, T )

The unwrapping procedure is shown in Algorithm 7.

4.3.5 Hardware Interface

The general architecture of the hardware block instantiating the different hardware building
blocks is shown in Figure 4.1.
The interaction between the different hardware blocks and the software running on the Cortex
M3 is done by the Control block whose architecture is shown in Figure 4.2
The control interface communicates with the software through the use of a Command register
that activates the different hardware blocks and a Status register that informs the software
about the status of the hardware. The figure 4.3 shows how commands are handled by the
control block.
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Algorithm 7: SEUnwrap procedure

Input: SSE , C, T
begin

AESSE
AD (0x0016)

for i ∈ {0, . . . , 9} do

Mi ←− AESSE
Decrypt(Ci)

res←− AESSE
LastDecrypt(T )

if res = ⊥ then
return (SSE ,⊥)

return (SSE ,M)

Figure 4.1: Architecture
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Figure 4.2: Interface of the control block

Command Register

The following table contains the available commands.
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ID Value Description

MODE IDLE 0x00000000 Do nothing
START PUF 0x00000001 Starts PUF computation
PLL MUX H 0x00000002 Raw random data before the XOR decimator
PLL MUX L 0x00000003 Random data after the XOR decimator
ASC WR KEY 0x00000004 Writes the 128 bits key in ASCON block (from DATA IN)
ASC WR NONCE 0x00000005 Writes the 128 nonce in ASCON block (from DATA IN)
ASC INIT 0x00000006 Computes initialization phase of ASCON
ASC ASSO 0x00000007 Processes associated data (from the DATA IN)
ASC ENCRYPT 0x00000008 Computes ciphertext block (to DATA OUT), then com-

putes pb

ASC F ENCRYPT 0x00000009 Computes last ciphertext block (to DATA OUT), then
computes pa

ASC DECRYPT 0x0000000A Computes plaintext block (to DATA OUT), then com-
putes pb

ASC F DECRYPT 0x0000000B Computes last plaintext block (to DATA OUT), then
computes pa

ASC RD TAG 0x0000000C Computes the tag (to DATA OUT)

As mentioned above those commands are handled by an automaton described in Figure 4.3.

Status Register

The following table describes the status register.

Bit number Status field name Description

0 ASCON INIT 1 when ASCON is initializing
1 ASCON ASSO 1 when ASCON is processing associated data
2 ASCON ENCRYPT 1 when ASCON is encrypting
3 ASCON DECRYPT 1 when ASCON is decrypting
4 ASCON F ENCRYPT 1 when ASCON is encrypting
5 ASCON F DECRYPT 1 when ASCON is decrypting
6 PUF BUSY 1 when the PUF is being computed
7 NEW TRNG 1 when a new word of random data is available
8 TRNG MUX STATE State of the control signal of the TRNG mux
9 unused
...

...
...

31 unused

4.4 Design Rationale

Demonstrator 3 is a portable secure messaging device that not only encrypts and authenticates
data but also authenticates the stream of messages sent and received by the peers (as well as
their order).
The communication between devices is provided through 2 untrusted PC that only serve as
network interfaces. In theory, with appropriate routing two such devices could communicate
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Figure 4.3: Handling the Command register
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over the internet. In the context of the demonstration however, the two untrusted PC will be
directly connected with an ethernet cable.
Sharing its hardware platform with Demonstrator 2 (see 3.5), Demonstrator 3 also makes use
of the Microsemi Smartfusion2 System on Chip, which is a low power, reconfigurable FPGA
device with a 32-bit ARM processor.
To match what users are accustomed to, the size of messages can range from 1 to 160 text
characters. Those messages are encrypted and authenticated using the sponge-based authenti-
cated encryption ASCON used both as a standalone AE scheme (in the 2-factor authentication
scheme as well as in the command messages) and as an instance of the MonkeyDuplex construc-
tion in a stream encryption derived from MonkeyWrap. Thus we guarantee that no message
will be shown to the user if it has been modified, replayed, served out of order or skipped.
When the device is turned off, the only informantion available in cleartext is the helper data
associated with the PUF (authenticated upon powerOn), the counter of false passphrase entries
and the session number (initially 0 for both peers and updated by each reset or on session
failure). Therefore no sensitive data is stored in plaintext.
The two-factor authentication protocol involves a user passphrase that is never transmitted
outside the device and a PUF that is by definition unique to a device. The device is immune
against key-logger attacks since the user authenticates directly on the device. Theft-protection
is provided as long as the user passphrase remains unknown to the attacker.

4.5 Hardware Platform

As the hardware platform is the same in Demonstrator 2 and Demonstrator 3 we refer the reader
to Section 3.5. We note however that the SD-card mass storage is not used in Demonstrator 3.
Additionally the communication between host PC and the hardware platform will be done in a
different way. The Demonstrator 3 will use an USB virtual communication port (VCP) driver to
create a serial link between PC and device. Afterwards, the PC application can be very simple,
because the VCP protocol behaves very similarly to a common serial port. The using of the
VCP does not require a special driver. The file with device information is only necessary. The
using of the VCP driver on existing hardware eliminates integration of an additional chip (e.g
UART to USB converter) and allows us to use one hardware for two different demonstrators.

4.6 Scope of the Evaluation

A typical use case for Demonstrator 3 is that a high ranking official of government or industry
uses it for having contact with the basis to discuss matters. The device then guarantees confi-
dentiality and integrity of the communication data. Such secure communication device is able
to encrypt its communication channels by using an algorithm and secret keys. Algorithms are
generally public while the keys have to be kept secret (Kerckhoff’s principle). Therefore the
keys stored inside the device are the primary assets and can be the target for an attack. Again,
a few different attack scenarios can be envisioned (see Section 5.3).

Scenario 1 An attacker collects encrypted data during a period of time, then steals the com-
munication device, extracts the keys and can in hindsight decrypt the communication streams
and make use of the confidential content. This can be interesting for attackers, but limits the
value of the obtained decrypted communication. For this attack scenario the device must have
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protection against disclosure of the cryptographic keys, but does not have to be tamper evident.
Tamper resistance is helpful, but should not be the primary protection method of the device.

Scenario 2 An attacker uses a two-stage approach, by which the cryptographic keys are
extracted during a time interval where the device is temporarily not possessed by the owner
(temporarily stolen). Assuming proper practical use (which should be reflected in guidance),
such time period can range from minutes to maximum a day. Obtaining the cryptographic
keys has the benefit for an attacker that he can decrypt and even change communication data
in real-time. This increases the value of the attack. To make such attack more difficult the
presence of tamper evidence measures is helpful, so it should be noticeable for the legitimate
user that the device has been tampered with. Tamper resistance is also helpful since it increases
the time an attacker needs to get access to the internals of the device. However, both tamper
evidence and tamper resistance should not be the primary protection methods to rely upon.
Attackers prefer methods to extract key information in a non-invasive way (without opening
the device).

Scenario 3 Besides key-extraction, an attacker might also aim for direct access to keyboard,
display and, bif used, audio channels. Built-in bugs may then tap directly into the plaintext
part of the communication channel, completely bypassing any cryptographic protection. In the
context of the HECTOR project direct attacks at plaintext signals are beyond the scope of the
project.

4.7 Conformance to Requirements

The following table shows the current status of Demonstrator 3 requirements defined in D 1.2.
All the requirements which need to be justified on the final hardware and software will be
reported in the upcomming deliverables D4.2 and D4.3.

Requirement Current status Remark

Required building blocks
TRNG block PLL-TRNG See Section 4.3.3
PUF block TERO-PUF See Section 4.3.2
Error correcting algorithm Several options See Section 4.3.3
Hash function SHA-3 A software instance will

be integrated on the
SecureHost

Authenticated encryption algorithm ASCON See Section 4.3.4
Functional requirements

”Ready” after 3 seconds To verify on the final
device

–

Protection against side-channel attacks Out of scope see Section 4.6
Protection against key-logger on host
PC

Compliant See Section 4.4

Protection against offline password
brute-force

Compliant See Section 4.4

Authentication failure rate < 10−4 To verify on the final
device

–
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160 bytes plaintext 1–160 bytes See Section 4.4
Doesn’t show out of order messages Compliant See Section 4.4
Doesn’t show replayed messages Compliant See Section 4.4
Doesn’t show modified messages Compliant See Section 4.4

Hardware requirements
Includes display for user interaction Non-illuminated dis-

play included
See 3.5.4

Includes keyboard for user interaction Capacitive keyboard in-
cluded

See 3.5.4

Includes SD-card One removable SD card
included

Not necessary for
demonstrator scenario

Limit EM emission Aluminium case used See 3.5.7
Provide tamper evidence Possible potting with

epoxy
See 3.5.7

Powered from USB To verify on the final
device

–

Cryptographic requirements
PUF requires < 20mW To verify on the final

hardware
–

PUF requires < 5k logic cells < 4.5k See Deliverable 2.2
PUF failure rate < 10−4 Pfail = 10−4 (influenced

by the applied error cor-
recting code and the re-
sulting bit error proba-
bility of the PUF)

See 3.3.2

TRNG is AIS20/31 PTG.2 compliant Compliant See 4.3.3
TRNG output data rate > 10kbits/s > 500kbits/s –
TRNG require < 100mW To verify on the final

hardware
–

TRNG requires < 2k logic cells < 1k –
TRNG startut tests require < 1 second
to complete

< 500ms –

AE is protected against side channel
analysis

Out of scope see Section 4.6

AE output data rate is > 2Mbits/s To verify on the final
hardware

–

AE requires < 10k logic cells < 3k See Deliverable 3.2
AE is tailored for 1-160 bytes plaintext Compliant See Section 4.4
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Chapter 5

Security Evaluation

The security evaluation work within HECTOR will be reported in several deliverables (D2.4,
D3.3 and D4.3). These deliverables will explain in more detail how the product will be used
(in terms of security), which threat models are envisioned and which attacks are applicable. A
vulnerability analysis will show which threats will have a chance to be exploited in a successful
attack. If insufficient countermeasures are present to mitigate such potential vulnerabilities,
then tests will be formulated to verify the actual sensitivity of the product for that particular
threat. The verdict on the overall security resistance will be based on a combination of the
results of the vulnerability analysis and the test results.

5.1 Guidance Information

Equally as important as the security performance of the product is any additional guidance
information that is provided with the product. Guidance information is the collection of docu-
mentation that describes how the product is to be used in order to fulfil its security promises.
Guidance documentation usually consists of description of:

• How to use the product (user manual),

• A description to verify the security integrity of the product when it is received by the
customer and before it is installed for the first time,

• Any weaknesses that have to be mitigated by additional security measures in order to
fulfil the overall security functionality, such as by posing requirements for the physical
environment or by limiting its use.

5.2 Role of the Demonstrator Physical Construction

The aim of the HECTOR project is to develop cryptographic hardware building blocks that have
good performances, while at the same time are robust against attacks. For Demonstrator 1
the security will not depend on tamper evidence and tamper resistance. For Demonstrator 2
the overall product security is slightly increased by some tamper resistance. However, in the
practice of commercially viable products the improved security does not outweigh the additional
costs for effective tamper resistance. Demonstrator 3 does benefit of a good tamper evident
and tamper resistant construction of the enclosure. However, development of such physical
enclosure which is an art by itself is not a goal of HECTOR. For this reason the evaluation of
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all demonstrators does not focus on the physical protection as offered by the enclosure, but on
the protection provided by the cryptographic building blocks.

5.3 Attacks in Scope

The HECTOR building blocks depending on the use cases and threat models should be
resistant against attacks such as side channel analysis, perturbation attacks and fault injec-
tion, where applicable in the envisioned use cases. All cryptographic products that are used
for high-security applications such as payment and identification should be resistant against
these attacks. In these application domains also physical attacks at chip-level are applicable.
However, the demonstrators are built using commercial off-the-shelf FPGAs, whose resistance
against physical chip attacks is not representative for future commercial products that exploit
HECTOR cryptographic building blocks using dedicated chips like ASICs or SOCs.

5.4 Evaluation Assurance Levels

Common Criteria is a standardised evaluation methodology (ISO-15048). This methodology
recognises seven levels of evaluation assurance Evaluation Assurance Level, or EAL ranging
from the lowest level EAL 1 (basic assurance) to the highest level EAL7 (formally proven
assurance).
Common Criteria (CC) evaluations cover the security claims of the product plus the develop-
ment process and environment. The idea behind this is that you start with the specifications
of the security properties of your product. Sets of security requirements are pre-defined for
important types of products, such as passports, payment cards, tachographs and other security-
relevant IT equipment. These sets of requirements are contained in Protection Profiles, which
act as templates for so-called Security Targets.
The Security Target contains the set of requirements that is claimed by a developer for a specific
product before the CC evaluation is started. If the development process is well-organized, then
the final product will provable contain the security properties as specified. In the context of the
HECTOR project a full CC evaluation cannot be applied. CC is developed for real commercial
products that are created by companies to serve a function in the market. In case of the
HECTOR demonstrators there is no real product, as well as no suitable Protection Profile
for the demonstrators to be used as template for the security requirements, the devices are
developed by different developers and there is no product production. Therefore the evaluation
of the development which is a considerable part of a CC evaluation is not applicable. However,
the technical parts of CC can be used to evaluate security relevant behaviour of a product. We
selected the following parts from CC which are meaningful for the HECTOR project:

Scoping of the Target Of Evaluation (TOE) This step is described in this document
(see Sections 2.5, 3.6, 4.6, ). It is based on the use-case of the IT product and envisions how it
is being used in order to be able to understand the product design and formulate meaningful
attack scenarios.

Design analysis A study of design documents is performed to understand the structure of
the product in terms of subsystems and modules and their roles in achieving the desired security
functionality.
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Vulnerability analysis A vulnerability analysis is usually done in conjunction with formu-
lation of attack scenarios. It is based on the security properties of the product, which may
or may not allow certain scenarios to be successful. Therefore it is important to have good
knowledge of all design considerations and detailed design information before commencing the
Vulnerability analysis. At this stage this is a theoretical assessment, based on the knowledge
of the design and implementation and experience with attack methods.

Formulation of viable attack scenarios Based on the use-case it is determined which
attack scenarios are relevant and which steps are required to perform these scenarios.

Selection of tests and setting up a test plan The Vulnerability Analysis is as said
a theoretical exercise. Based on the design some attacks can be ruled-out because applied
countermeasures prove to prevent those attacks. A simple example is the use of a PIN retry
counter, which prevents brute force attacks. Other attacks rely on inherent physical behaviour
of the TOE, which cannot be predicted from the design and implementation alone. An example
is how the hardware reacts on perturbation attacks: in case the program can be influenced by
light flashes, it might be possible to reset the PIN retry counter.

Rating of reasonable attack scenarios In case the rating value exceeds a defined value, the
product has a residual vulnerability. Such known weakness then has to be covered by additional
security measures, such as protective software or organizational security measures.

Test execution Penetration testing and analysis of results.
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Chapter 6

Summary and Conclusion

This deliverable was dedicated to the detailed specification of the demonstrator. It advances
Deliverable 1.2 where requirements on the building blocks were previously specified. The doc-
ument precisely described the selected primitives, developed in the scope of the work packages
WP2 and WP3, which will be integrated in the HECTOR hardware platform. The primitives
were selected with the goal to achieve the best security evaluation results in the following task
T4.3.
The TRNG implemented in Demonstrator 1 will constitute a tangible device with specific and
practical exploitation. In addition, the integration of the independent TRNG ensures its stable
and reliable implementation isolated from the other function blocks.
On the contrary, Demonstrators 2 and 3 combine PUF, TRNG and AEAD with other building
blocks in a single device. Their integration will bring other challenges and outcomes:

• practical profit in a real device (e.g. security vs effectiveness);

• interference between primitives (e.g. reliability of PUF function surrounded by the other
operating blocks).

The integration will benefit also from the collaboration between academic and industrial part-
ners, where scientific and practical experience can be exchanged.
While the goal of the work package WP4 is to demonstrate practical relevance of the HECTOR
project results, the designed demonstrators are not intended to be neither final commercial
products nor prototypes of them.
It is important to mention that the deliverable synthesized outputs of three different work pack-
ages, and involved collaboration of the majority of the partners. Therefore, the consortium had
to make many compromises in order to achieve the best combination of the developed features.
The main result of the task T4.1 is the final consensus on the content of the demonstrators –
the most tangible output of the project. In the upcoming task T4.2 Integration of Hardware
Modules, the consortium will progress following this deliverable.
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Chapter 7

List of Abbreviations

AEAD Authenticated Encryption with Associated Data

AE Authenticated Encryption

AES Advanced Encryption Standard

ASIC Application Specific Integrated Circuit

ATX Advanced Technology eXtended

CC Common Criteria

CRC Cyclic Redundancy Code

DC Delay Chain

DFF D Flip-Flop

DRNG Deterministic Random Number Generator

DDR SDRAM Double Data Rate Synchronous Dynamic Random Access Memory

EAL Evaluation Assurance Level

EM Electromagnetic

eNVM Embedded Non-Volatile Memory

FIPS Federal information processing standard

FIFO First In First Out register

FPGA Field Programmable Gate Array

GCD Greatest Common Divisor

IV Initialization Vector

KAT Known Answer Test

LED Light Emitting Diode

LVDS Low Voltage Differential Signaling

LUT Look-Up Table

MV Majority Voting

SD Secure Digital

SF2 Microsemi SmartFusion2

SSI Synchronous Serial Interface

HECTOR D4.1 Page 71 of 74



D4.1 - Demonstrator Specification

TOE Target Of Evaluation

UART Universal Asynchronous Receiver/Transmitter

PC Personal Computer

PCB Printed Circuit Board

PLL Phase-Locked Loop

PTRNG Physical True Random Number Generator

PUF Physical Unclonable Function

RAM Random Access Memory

RNG Random Number Generator

RO Ring Oscillator

RTC Real Time Counter

SD card Secure Digital card

SoC System on Chip

TERO Transient Effect Ring Oscillator

TRNG True Random Number Generator

USB Universal Serial Bus

ULPI USB Low Pin Count Interface

UART Universal Asynchronous Receiver Transmitter

VCP Virtual Communication Port

VCO Voltage Controlled Oscillator
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