
D3.3
Report on the Security Evaluation of Cryptographic Algorithms
and Countermeasures when non Ideal Hardware Building Blocks

are Used

Project number: ICT-644052

Project acronym: HECTOR

Project title: Hardware Enabled Crypto and Randomness

Project Start Date: 1 March, 2015

Duration: 36 months

Programme: H2020-ICT-2014-1

Deliverable Type: Report

Reference Number: ICT-644052-D3.3

Workpackage: WP3

Due Date: 31 August, 2017

Actual Submission Date: 31 August, 2017

Responsible Organisation: KU Leuven

Editor: Dave Singelée, Josep Balasch

Dissemination Level: Public

Revision: 1.0

Abstract:

This report is one of the main scientific outcomes of the HEC-
TOR project and represents the final version of deliverable
D3.3 of work package WP3. Together with deliverable D3.1, it
is part of the WP3 proceedings and extensively discusses the
research results of WP3. It covers four main activities. First,
the cryptanalysis of cryptographic primitives with respect to
non-ideal keys. Second, it proposes an optimization strat-
egy for cryptographic post-processing of PUFs and TRNGs,
based on a duplex-sponge construction. Third, the study of
the security degradation of countermeasures in the presence
of non-ideal random numbers. Fourth, it reports several new
results on side channel countermeasures and the evaluation
of side channel robustness at design-time, which not yet have
been reported in deliverables D3.1 and D3.2.

Keywords: cryptanalysis, post-processing, side channel countermeasures

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement no. 644052.

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

Editor

Dave Singelée, Josep Balasch (KU Leuven)

Contributors (ordered according to beneficiary numbers)

Josep Balasch, Dave Singelée (KUL)
Maria Eichlseder (TUG)
Pierre Bayon (BRT)
Ruggero Susella, Filippo Melzani (STI)

Disclaimer

The information in this document is provided as is, and no guarantee or warranty is given that the

information is fit for any particular purpose. The content of this document reflects only the author’s

view - the European Commission is not responsible for any use that may be made of the information it

contains. The users use the information at their sole risk and liability.

HECTOR D3.3 Page I

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

Executive Summary

This deliverable concerns the research activities carried out within tasks T3.1 and T3.2 of
the HECTOR project. It covers two main topics: the security evaluation of cryptographic
primitives with non-ideal keys and the analysis of the security degradation of countermeasures
against physical attacks in presence of non-ideal random numbers. This deliverable also re-
ports on the latest research progress in task T3.4, which was not yet described in deliverable D3.1.

To assess how security degrades when keying material (keys, initialization vectors, nonces, etc.)
deviate from ideal, we have applied the related-key attacker model, known-key security model
and TWEAKEY framework to various cryptographic primitives. This has resulted in improved
cryptanalysis for each of these block ciphers, hash functions and authenticated encryption
schemes. Moreover, we have proposed a novel security model to study how known-key attacks
on block ciphers and permutations impacts the security of cryptographic hash functions built
upon these primitives. As an illustration on how to improve the efficiency of security schemes
which combine TRNGs or PUFs with lightweight cryptography, we have proposed a sponge
construction which integrates cryptographic post-processing and (authenticated) encryption
into a single primitive.

To determine the security degradation of side channel countermeasures in the presence of
non-ideal random numbers, we have devised a generic evaluation framework that outputs as
quality metric the minimum number of side channel measurements for an attack to succeed.
We have applied this framework to different families of countermeasures (masking and hiding),
using multiple sets of non-ideal random number sequences (synthetic and real) and in two
different yet relevant scenarios (under simulation and experimentally). The analysis of all these
different configurations allows us to gain insight on which countermeasures are more susceptible
to potential non-idealities in the random number sequences. At the same time, it also serves to
quantify the adversarial effort gains necessary to break the protected implementations.

This deliverable is organized as follows. The overall topic of the report is introduced in Chapter
1. Novel cryptanalysis results based on non-ideal keys are presented in Chapter 2. In the same
line of work, Chapter 3 proposes the Weak Cipher Model (WCM) and applies this to various
Block cipher-Based and Permutation-Based Hash Functions. Chapter 4 explores the concept
of lightweight post-processing, and illustrates how sponge constructions could be applied to
reduce the implementation cost. The next part of the deliverable presents the research results
on evaluating the security degradation of side channel countermeasures when using non-ideal
random numbers. The methodology followed to analyze this security degradation has been
outlined in Chapter 5, while Chapter 6 and 7 respectively describe the evaluation results using
side channel measurement simulations and real measurements from implementations on the
HECTOR boards. In Chapter 8, novel research results on efficient countermeasures (task T3.4
of the HECTOR project) are presented. Finally, Chapter 9 concludes this deliverable.

HECTOR D3.3 Page II

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

Contents

1 Introduction 1

2 Cryptanalysis based on non-ideal keys 3
2.1 Introduction . 3
2.2 Related-Key Rectangle Cryptanalysis of Rijndael-160 and Rijndael-192 4

2.2.1 Introduction . 4
2.2.2 Description of Rijndael . 4
2.2.3 Rectangle Attack . 5
2.2.4 Designing the rectangle distinguisher . 7
2.2.5 Attack on 8-Round Rijndael-160/160 . 10
2.2.6 Attack on 10-Round Rijndael-192/192 13

2.3 Subkey Recovery on CAESAR candidate iFeed 18
2.3.1 Introduction . 18
2.3.2 Description of iFeed . 18
2.3.3 Forgery and Subkey Recovery Attack on iFeed 20
2.3.4 Finding EK(P ∗) for Any Plaintext P ∗ . 21
2.3.5 Discussion . 22

2.4 Related-Tweakey Differential Attack on MANTIS-5 23
2.4.1 Introduction . 23
2.4.2 Description of MANTIS . 24
2.4.3 Differential Characteristic . 26
2.4.4 Key Recovery . 30
2.4.5 Discussion . 34

2.5 Known-Key Differential Attack on Simpira v1 35
2.5.1 Introduction . 35
2.5.2 Description of Simpira . 36
2.5.3 Collision Attacks on Simpira-4 Hash . 38

2.6 Conclusion . 44

3 Weak Cipher Model: cryptanalysis of hash functions 45
3.1 Introduction . 45
3.2 The Weak Cipher Model . 46

3.2.1 Security Model . 46
3.2.2 Random Weak Cipher . 47
3.2.3 Random Abortable Weak Cipher . 48

3.3 Modeling Known-Key Attacks . 50
3.4 Application to PGV Compression Functions . 52

3.4.1 Collision Security . 53

HECTOR D3.3 Page III

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

3.4.2 Preimage Security . 54
3.5 Application to Grøstl Compression Function . 55

3.5.1 Collision Security . 55
3.5.2 Preimage Security . 56

3.6 Application to Shrimpton-Stam Compression Function 56
3.6.1 Collision Security . 56
3.6.2 Preimage Security . 56

3.7 Conclusion . 57

4 Lightweight cryptographic post-processing 58
4.1 Introduction . 58
4.2 Optimization by reusing cryptographic primitives 59

4.2.1 Cryptographic post-processing for PUFs 60
4.2.2 Cryptographic post-processing for TRNGs 60

4.3 How to integrate cryptographic post-processing and lightweight symmetric-key
crypto . 61
4.3.1 Motorist-layer construction . 61
4.3.2 Duplex-sponge construction . 62

4.4 Conclusion and other use cases . 64

5 Security degradation of side channel countermeasures 65
5.1 Background . 65

5.1.1 Differential side channel attacks . 65
5.1.2 Side channel countermeasures . 67

5.2 Testing Framework . 68
5.2.1 Experimental setup with HECTOR board 69

5.3 Generating non-ideal random numbers . 71
5.3.1 Synthetic sets . 71
5.3.2 Real sets. 74

5.4 Conclusions . 75

6 Simulation-based analysis of security degradation 77
6.1 Introduction . 77
6.2 Analysis of unprotected implementation . 78
6.3 Analysis of Masking countermeasures . 79

6.3.1 Boolean Masking . 79
6.3.2 Inner Product Masking . 81

6.4 Analysis of Hiding countermeasures . 84
6.5 Validation of simulation results . 85
6.6 Conclusions . 87

7 Experimental-based analysis of security degradation 90
7.1 Boolean masking . 90

7.1.1 Countermeasure principle . 90
7.1.2 Measurement results . 91

7.2 DES dummy round . 94
7.2.1 Countermeasure principle . 94
7.2.2 Measurement results . 96

7.3 Vertical noise addition . 98

HECTOR D3.3 Page IV

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

7.3.1 Countermeasure principle . 98
7.3.2 Measurement results . 99

7.4 Dummy rounds and vertical noise . 101
7.4.1 Countermeasure principle . 101
7.4.2 Measurement results . 101

7.5 Conclusions . 102

8 Progress efficient crypto and countermeasures 104
8.1 Unified Masking Approach: Application to Ascon 104

8.1.1 Introduction to the Unified Masking Approach 104
8.1.2 Practical Evaluation on Ascon . 105
8.1.3 Side Channel Evaluation . 109
8.1.4 Discussion on the Randomness Costs and Conclusions 110

8.2 Symbolic analysis of higher-order side channel countermeasures 111
8.2.1 Notation and definitions . 113
8.2.2 A method for detecting higher order vulnerability 114

8.3 Towards Side Channel Analysis at Design Time 116
8.3.1 Introduction . 116
8.3.2 Side Channel Aware Design Flow . 117
8.3.3 Experimental Results . 121
8.3.4 Conclusions . 124

9 Conclusions 125

10 List of Abbreviations 127

HECTOR D3.3 Page V

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

List of Figures

2.1 Byte index of the state matrix and the shift offsets for each block length Nb . . . 5
2.2 The related-key Rectangle distinguisher . 7
2.3 A local collision of Rijndael-160/160 . 7
2.4 The related-key computation of Rijndael-160/160 7
2.5 The related-key Rectangle attack on 8-Round Rijndael-160/160. Switch is applied

in Round 4 . 10
2.6 The related-key Rectangle attack on 10-Round Rijndael-192/192. Switch is

applied in Round 6 . 14
2.7 iFeed encryption E . All wires represent n-bit values. The output is the ciphertext

C1 · · ·C` and the tag T = leftτ (TA ⊕ C`+1) . 20
2.8 iFeed decryption D. All wires represent n-bit values. The output is the plaintext

P1 · · ·P` when T is leftτ (TA ⊕ C`+1) . 21
2.9 PRINCE-like structure of MANTISr, illustrated for MANTIS5. 25
2.10 The MANTIS round functions Ri and R−1

i . 25
2.11 The MANTIS permutations h and P. 26
2.12 Differential distribution tables (DDT) of the MANTIS round operations. 26
2.13 Family of differential characteristics for MANTIS5. 27
2.14 Initial structure with 8 · 4 pairs from 2 · 8 queries per cell. 29
2.15 Round function for round i of Simpira-b for b ≥ 4, b 6= 6, 8. 38
2.16 Iterative 4-round trail for Simpira-4 with 10 independently active S-boxes. . . . 39
2.17 Trail for the F -function with 5 active S-boxes. 40
2.18 Trail for the F -function with probability 2−30 40
2.19 Differential for F -function with probability 2−27.54 41
2.20 16-round collision attacks on Simpira-4 hash using 8-round initial structure. . . . 42

3.1 Random weak cipher π. An adversary has access to π, π−1, and πΦ. 48
3.2 Random abortable weak cipher π̄. An adversary has access to π̄, π̄−1, and π̄Φ. . 49
3.3 The 12 PGV compression functions. When in iteration mode, the message comes

in at the top. The groups G1 and G2 refer to Lem. 3. 52
3.4 Grøstl compression function (left) and Shrimpton-Stam (right). 56

4.1 PUF is used as input key for cryptographic algorithm. 59
4.2 TRNG provides input key for cryptographic algorithm. 59
4.3 PUF with cryptographic post-processing and encryption combined. 59
4.4 TRNG with cryptographic post-processing and encryption combined. 60
4.5 DRNG with forward and enhanced backward secrecy: (a) when using a one-way

function; (b) when using a block cipher behaving as a one way function. 61
4.6 General sponge construction [9]. 62
4.7 Overall system view. 63

HECTOR D3.3 Page VI

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

4.8 Sponge construction combining cryptographic post-processing and encryption. . 63

5.1 Experimental setup to measure power consumption of a device (left). Exemplary
power measurement from an AES-128 execution on an embedded processor (right). 66

5.2 Result of classical SB-DPA attack against an unprotected AES Sbox implemen-
tation: scores for the correct key (left), scores for a representative wrong key
(right). 67

5.3 Our proposed testing approach. 68
5.4 Side channel analysis measurement setup used for HECTOR experiments. 69
5.5 Close look at the amplification and filtering used during the practical measurements. 70
5.6 Picture of the loop antenna used during the practical measurements. 70
5.7 Communication framework used in the experiments. 71
5.8 Histogram plots (byte grouping) of random sequences with different biases towards

zero: 0% bias (top left), 5% bias (top middle), 10% bias (top left), 15% bias
(bottom left), 20% bias(bottom middle), 25% bias (bottom right). Each sequence
contains 10 million bytes. Note that plots are at different vertical scale. 72

5.9 Histogram plots (byte grouping) of random sequences failing T2 (top), T3 (second
from top), T4 (second from bottom) and T8 (bottom) for small degradation (left),
average degradation (middle), high degradation (right). Each sequence contains
10 million bytes. Note that plots are at different vertical scale. 73

5.10 Histogram plots (byte grouping) of random sequences obtained at -40 degrees for
different power supply voltages: 0.9 V (top left), 1.0 V (top middle), 1.1 V (top
left), 1.2 V (bottom left), 1.3 V (bottom middle), 1.4 V (bottom right). Each
sequence contains 2 million bytes. Note that plots are at different vertical scale. 75

5.11 Histogram plots (byte grouping) of random sequences obtained at 20 degrees for
different power supply voltages: 0.9 V (top left), 1.0 V (top middle), 1.1 V (top
left), 1.2 V (bottom left), 1.3 V (bottom middle), 1.4 V (bottom right). Each
sequence contains 2 million bytes. Note that plots are at different vertical scale. 76

5.12 Histogram plots (byte grouping) of random sequences obtained at 80 degrees for
different power supply voltages: 0.9 V (top left), 1.0 V (top middle), 1.1 V (top
left), 1.2 V (bottom left), 1.3 V (bottom middle), 1.4 V (bottom right). Each
sequence contains 2 million bytes. Note that plots are at different vertical scale. 76

6.1 Test scenario: we evaluate the side channel resistance of an AES SubBytes

transformation protected with countermeasures that consume randomness. . . . 78
6.2 Univariate attacks against an unprotected AES Sbox: CPA (left), SB-DPA (right). 79
6.3 Univariate CPA attack against AES Sbox protected by 1st-order Boolean masking

with random numbers biased towards 0 (left) and 1 (right). 80
6.4 Univariate CPA attack against AES Sbox protected by 1st-order Boolean masking

with random numbers failing test 2: poker test (left) and tests 3,5,8: run test,
autocorrelation, entropy (right). 81

6.5 Univariate CPA attack against AES Sbox protected by 1st-order Boolean masking
with random numbers obtained from a real TRNG when modifying its environ-
mental conditions: -40 degrees (top left), 20 degrees (top right), 80 degrees
(bottom). 82

6.6 Univariate CPA attack against AES Sbox protected by 1st-order IP masking with
random numbers biased towards 0 (left) and 1 (right). 83

6.7 Univariate CPA attack against AES Sbox protected by 1st-order IP masking with
random numbers failing test 2: poker test. 83

HECTOR D3.3 Page VII

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

6.8 Univariate CPA attack against AES Sbox protected by 1st-order IP masking with
random numbers obtained from a real TRNG when modifying its environmental
conditions. 84

6.9 Univariate CPA attack against AES Sbox protected by generic hiding counter-
measures with biased random numbers: p̂ = 1/16 (top left), p̂ = 1/32 (top
left),p̂ = 1/64 (bottom). 86

6.10 Univariate CPA attack against AES Sbox implementation protected by 1st-order
Boolean masking running on an AVR 8-bit controller. Results with masks off
(top left); masks with 5% bias (top right); masks with 5% bias (second from top,
left); masks with 5% bias (second from top, right); masks with 5% bias (second
from bottom, left); masks with 5% bias (second from bottom, right); uniform
masks (bottom). 88

6.11 1st-order CPA attack against AES Sbox implementation protected by 1st-order
Boolean masking with random numbers biased towards 0. Red line indicates the
noise level of our AVR platform determined by the results of our experiments. . 89

7.1 Boolean XOR masking base circuitry. 91
7.2 One of the traces measured during the targeted XOR operation (top). Correlation

with the 16 input bytes (middle). Correlation with the 16 output bytes (bottom). 92
7.3 Intervals selected for the test (top), with the corresponding output correlation

traces (bottom). 93
7.4 Graphical summary of the results with the Boolean masking countermeasure. . . 94
7.5 DES Dummy round countermeasures principle. 95
7.6 Example of two EM traces recorded during a DES execution when the counter-

measures is on. 95
7.7 From top to bottom: Raw and filtered EM traces measured during the test of

the dummy round countermeasure respectively, eight superimposed correlation
traces computed with the raw EM traces and eight superimposed correlation
traces computed with the filtered EM traces. 97

7.8 Graphical summary of the results with the countermeasure which adds vertical
noise. 98

7.9 Vertical noise addition base circuitry. 99
7.10 Vertical noise addition base circuitry. 99
7.11 From top to bottom: Filtered EM trace measured during the test of the vertical

noise countermeasure with 75% bias and eight superimposed correlation traces
showing the input leakage. 100

7.12 Graphical summary of the results with the countermeasure which adds vertical
noise. 101

7.13 From top to bottom: Filtered EM trace measured during the test of the combina-
tion of the vertical noise and dummy round countermeasures with 75% bias level
and eight superimposed correlation traces showing the input leakage. 102

7.14 Graphical summary of the results with the combination of the vertical noise and
dummy round countermeasures. 103

8.1 Overview of the Ascon core (left) and the state module of the Ascon design
(right) . 105

8.2 Ascon’s S-box module with optional affine transformation at input (grey) and
variable number of pipeline registers (green) . 107

HECTOR D3.3 Page VIII

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

8.3 UMA versus DOM area requirements for different protection orders. Left figure
compares masked AND gates, right figure compares full Ascon implementations 107

8.4 UMA versus DOM area requirements for different protection orders and 64 parallel
S-boxes (left) and throughput comparison in the right figure 108

8.5 T-test evaluation for different protection orders d = 0 . . . 3 (from top to bottom)
and for different t-test orders (first to third, from left to right) 110

8.6 UMA versus DOM area requirements including an area estimation for the ran-
domness generation in the left figure, and an efficiency evaluation (throughput
per chip area) on the right . 111

8.7 Traditional, semi-custom ASIC hardware design flow. 117
8.8 Proposed SCA aware design flow. 118
8.9 Normalized power consumption of a CMOS circuit estimated using MSM, PT,

and HSPICE models. 120
8.10 Trichina AND gate design (left). Overview of exemplary measurements from our

toolchain (right). 121
8.11 Differential trace using RTL simulations (left). Differential trace using MSM-POS

simulations (right). 122
8.12 DOM-indep AND gate design (left). Overview of exemplary measurements from

our toolchain (right). 122
8.13 Differential trace using MSM-POS simulations with mask off (left). Differential

trace using MSM-POS simulations with dependent inputs (right). 123
8.14 TI 3-share AND gate design. 124
8.15 Differential trace using MSM-POS simulations without third share (left). Differ-

ential trace using pre-processed MSM-POS simulations to test for second-order
leakage (right). 124

HECTOR D3.3 Page IX

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

List of Tables

2.1 Related-key differences for Rijndael-160 . 8
2.2 Related-key differences for Rijndael-192 . 8

5.1 List of components used in the measurement setup. 69

7.1 Results summary of the analysis on the impact of the Boolean masking on the
number of traces needed to retrieve fully all S-Box sub-key candidates. 93

7.2 Truth table of the logic driving the dummy round selection. 96
7.3 Results summary of the analysis on the impact of the dummy round counter-

measure on the number of traces needed to retrieve fully all S-Box sub-key
candidates. 97

7.4 Results summary of the analysis on the impact of the vertical noise countermeasure
on the number of traces needed to retrieve fully all S-Box sub-key candidates. . 100

7.5 Results summary of the analysis on the impact of the combination of the vertical
noise and dummy round countermeasures on the number of traces needed to
retrieve fully all S-Box sub-key candidates. 102

HECTOR D3.3 Page X

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

Chapter 1

Introduction

Random numbers are essential in cryptography, as they are widely used for confidential keys,
initialization vectors and padding values. They are also used in cryptographic authentication
protocols and even in countermeasures against side channel attacks. Therefore, Random number
generators (RNG) are one of the most essential building blocks in a security system. Physical
unclonable functions (PUFs) are a much younger primitive. One of their use cases is the
generation of uncloneable cryptographic keys with highly secured storage.
Since security is based on confidentiality of cryptographic keys, key generators applied in
cryptographic applications must be cryptographically secure, they must generate keys (random
numbers) that have good statistical properties and the generated sequences must not be
predictable or vulnerable to manipulation. However, requirements of unpredictability and
robustness against manipulation can be generalized to all applications of random numbers
and PUF responses in data security applications. For this reason, the expected functioning
of physical random number generators and physical unclonable functions directly impacts the
security of the whole cryptographic system.
In this deliverable, we actually look at two cases where random numbers are used as input:
cryptographic primitives (keys, nonces, etc.) and side channel countermeasures (masking, noise,
etc.). Security in the context of limited randomness has already been investigated at the protocol
level and for public-key encryption. However, it has not yet been studied at the symmetric-key
primitive level. In task T3.1, a first step into this direction is made by building upon the
related-key and known-key security models for block ciphers. Similarly, the security of most side
channel countermeasures - in particular masking - relies on random numbers that are drawn
from a uniform distribution. It is understood that if this property does not hold, leakage will
appear that may enable attacks. However, it has not been studied in detail what types of
non-uniformity are more harmful to which countermeasures. This is the main research challenge
tackled in task T3.2.
This deliverable discusses the scientific outcomes of work package WP3 of the HECTOR project,
together with deliverable D3.1 [82] which has been submitted before. It consists of four main
parts. The first two parts present the research results of task T3.1, which aims to evaluate
the security degradation of cryptographic primitives when using non-ideal keys. This problem
has been studied from two different angles. The first part of this work, which is discussed in
Chapter 2 and 3 of this deliverable, focuses on cryptanalytic techniques to study the effect of
non-ideal keys (for example, relations between subkeys, non-independent round keys, etc.) on the
mathematical strength of a cipher or hash function. The goal of this research is to get a better
understanding of the relation between structural properties of cryptographic primitives and
randomly drawn variables (keys, nonces, etc.). The second part of this work, which is discussed

HECTOR D3.3 Page 1 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

in Chapter 4, connects the work of WP2 and WP3 of the HECTOR project. This research starts
from the observation that proper TRNG and PUF design requires post-processing to improve
the “quality” of their output, and that this post-processing might be consuming more resources
than the cryptographic primitive that will be using these TRNG/PUF outputs. Therefore, the
research challenge tackled in this work is to investigate how the overall system can be made
more lightweight, for example by combining part of the functionality of the post-processing and
the cryptographic primitive. The third part of this deliverable covers the research results of
task T3.2, which aims to evaluate the security degradation of countermeasures against physical
attacks in the presence of non-ideal random numbers. Chapter 5 gives an overview of the
framework and tools we used to perform this evaluation, while the results of the evaluation of
the countermeasures are discussed in Chapter 6 and 7. Our study employs both synthetic sets of
non-ideal random numbers as well as real sets obtained from experiments in WP2, and uses both
simulations of side channel measurements as real measurements from implementations on the
HECTOR board to assess the security degradation of the side channel countermeasures. Lastly,
the fourth and last part of this deliverable gives an update on the novel research results obtained
in the context of HECTOR task T3.4, but which not yet have been reported in deliverable D3.1.
The overview of these scientific results can be found in Chapter 8 of the deliverable.

HECTOR D3.3 Page 2 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

Chapter 2

Cryptanalysis based on non-ideal keys

2.1 Introduction

When designing cryptographic primitives, it is important to understand the robustness of the
primitives in a mathematical context of a cryptanalytic scenario. This cryptanalysis is a complex
task and has evolved over the years. The two most well-known techniques are linear cryptanalysis,
whose goal is to approximate the cipher by affine equations, and differential cryptanalysis, whose
goal is to study how differences in the input of the cipher affect differences at the output.
However, there are other cryptanalysis techniques as well to assess the mathematical strength
of the cipher. Some of these explicitly study the relation between cryptographic (sub)keys
- for example generated by an RNG - and the cipher. These cryptanalytic techniques are
not only important from a theoretical point of view, because protocol flaws or weaknesses in
random numbers could create unintentional relations between nonces and/or keys, which could
significantly influence the cryptographic strength of the cipher. Within the HECTOR project,
we particularly focused on the cryptanalytic techniques that capture this concept of “non-ideal”
keys: related-key attacks, known-key attacks and related-tweaky (differential) attacks.

Related-key attack: In the related-key model, the attacker can decrypt/encrypt not only
under the master key K, but also under the keys f1(K), f2(K), . . . , fm(K), which are
called related-keys. The relations fi are chosen by the attacker in advance. This relation
could be a simple mapping such as rotations or bit flips, or a more advanced function.
The aim of the attacker is to recover the master keys.

Known-key attack: In the classical security models for block ciphers the key is secret and
randomly drawn, and the adversary’s target is to distinguish the instantiation of the cipher
from a random permutation. In the setting of known-key security, the key is presumed
known, and the adversary succeeds in distinguishing if it identifies a structural property
of the cipher.

Related tweaks: Tweakable block ciphers (TBCs) [76] generalize block ciphers by adding an
additional public input, the tweak, which plays a role similar to the nonces of AEAD
schemes, and is under full control of the adversary. Tweakable constructions such as the
TWEAKEY framework [60] incorporate the tweak as part of the key schedule. Thus,
choosing related tweaks creates a cryptanalytic setting closely tied to related keys.

Within the HECTOR project, we applied each of these cryptanalysis techniques to one or more
symmetric key primitives, such as block ciphers or authenticated encryption primitives, and
improved the currently best-known cryptanalytic attacks on these algorithms.

HECTOR D3.3 Page 3 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

2.2 Related-Key Rectangle Cryptanalysis of Rijndael-160

and Rijndael-192

2.2.1 Introduction

Rijndael [32] is a block cipher designed by Daemen and Rijmen and is a substitution-permutation
network following the wide-trail strategy. Both the block length and the key length can be any
multiple of 32 bits, with a minimum of 128 bits and a maximum of 256 bits, independently
of each other with key size greater than or equal to block size. The 128-bit block variant of
Rijndael has been chosen as the Advanced Encryption Standard (AES) [95]. Our research deals
with non-AES Rijndael variants, that is, Rijndael-b/k where b indicates the block size and k
indicates the key size in bits.
AES is one of the most well-studied block ciphers: since its introduction 15 years ago there has
been extensive analysis of AES. Some prominent examples include square attacks, impossible
differential attacks, boomerang attacks, rectangle attacks and meet-in-the-middle attacks in both
the single-key and related-key settings. On the other hand, the variants of Rijndael with larger
block sizes have got arguably less attention from the cryptographic community. Current analysis
includes several multiset and integral attacks [40,43,74,91], as well as impossible differential
cryptanalysis [92, 112, 117]. These target 6 or 7 rounds of Rijndael-160/160 and 6, 7, 8 or 9
rounds of Rijndael-192/192 respectively. We extend this work by presenting the first related-key
rectangle cryptanalysis of Rijndael-160/160 and Rijndael-192/192. The results of this section
were published in the journal IET Information Security [113].

2.2.2 Description of Rijndael

In Rijndael, each data block (plaintext, ciphertext, subkey, or intermediate step) is represented
by a 4×Nb state matrix of bytes, where Nb is the block size divided by 32. The state is then
transformed by iterating a round function. The round function is composed of the following
four operations:

• SubBytes (SB) : a non-linear byte substitution (8× 8-bit S-box) that acts on every byte
of the state.

• ShiftRows (SR): a cyclic shift of bytes in a row that acts individually on each of the last
three rows of the state. The shift offset Ci of row i depends on the block length Nb (See
Figure 2.1).

• MixColumns (MC): a linear transformation (based on an [8, 4, 5] MDS code over GF (28))
that acts independently on every column of the state

• AddRoundKey (AK): the exclusive-or of the round key with the intermediate state.

The number of rounds for the cipher Nr varies with Nb and Nk (the key size divided by 32).
Before the first round, there exists a whitening layer consisting of AK only, and in the last round
the MC operation is omitted. We assume that this is also the case for the reduced round versions
of Rijndael.

Key Scheduling

The key schedule derives (Nr + 1) b-bit round keys RK0, RK1 . . .RKNr from the master key.
It consists of a linear array of 4-byte words denoted by W [i] for 0 ≤ i ≤ Nb · (Nr + 1). The

HECTOR D3.3 Page 4 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

(3,0) (3,1) (3,2) (3,3) (3,4) (3,5) (3,6) (3,7)

(a) Byte index

Nk
Nb

4 5 6 7 8
4
5
6
7
8

(b) Number of rounds

10
11
12
13
14

13
13
13
13
14

Nb C0 C1 C2 C3

(c) Shift offsets

(2,0) (2,1) (2,2) (2,3) (2,4) (2,5) (2,6) (2,7)

(1,0) (1,1) (1,2) (1,3) (1,4) (1,5) (1,6) (1,7)

(0,0) (0,1) (0,2) (0,3) (0,4) (0,5) (0,6) (0,7)

256224196160128

12
12
12
13
14

4
5
6
7
8

0
0
0
0
0

1
1
1
1
1

2
2
2
2
3

3
3
3
4
4

14
14
14
14
14

11
11
12
13
14

Figure 2.1: Byte index of the state matrix and the shift offsets for each block length Nb

first Nk words W [0]‖W [1]‖ · · · ‖W [Nk − 1] are directly initialized with the words of the master
key, while the remaining key words, W [i] for i ∈ [Nk, Nk · (Nr + 1)− 1] are generated by the
following algorithm:

if (i mod Nk) = 0 then W [i] = W [i−Nk]⊕ SB(W [i− 1] ≪ 8)⊕Rcon[i/Nk]

else if (Nk > 6 and i mod Nk = 4) then W [i] = W [i−Nk]⊕ SB(W [i− 1])

else W [i] = W [i−Nk]⊕W [i− 1]

where ≪ denotes the rotation of the word to the left and Rcon[·] denotes the fixed constants.
Then the round key RKi is given by the words W [Nb · i] to W [Nb · (i+ 1)].

Notation

The notation that we will use throughout this section is as follows:

Pa, Pb, Pc, Pd the plaintexts
(Pa)i,j,(Pb)i,j,(Pc)i,j,(Pd)i,j the byte at row i column j of the plaintext state
Ca, Cb, Cc, Cd the ciphertexts
Ka, Kb, Kc, Kd secret related keys
(Ka)i,j, (Kb)i,j, (Kc)i,j, (Kd)i,j the byte at row i column j of the secret related keys
Kr
a, K

r
b , K

r
c , K

r
d secret subkey of Ka, Kb, Kc and Kd in round r

∆Kr
ab, ∆Kr

ac, ∆Kr
cd, ∆Kr

bd the difference of the related keys in round r
(∆Kr

ab)i,j difference byte of state ∆Kr
ab, at position row i

and column j
SB[(i, j)] the SB operation on the byte at row i column j of

the state matrix
E(·, ·) encryption operation defined as

{0, 1}n × {0, 1}k → {0, 1}n

2.2.3 Rectangle Attack

The rectangle attack [12] introduced by Biham et al. is a special type of differential cryptanalysis.
The main idea of the attack is to divide the cipher E into two sub-ciphers E0 and E1 such
that E = E1 ◦ E0. The attacker then constructs two relatively short differentials for E0 and E1

instead of finding a long differential for the block cipher E. After that, a rectangle distinguisher
for E can be established by combining these two short differentials delicately. This technique is
useful when we have good short differential characteristics and very bad long ones.

HECTOR D3.3 Page 5 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

It is also possible to combine rectangle attack with related-key attack to derive the related-key
rectangle attack [15] in which the attacker can query to the cipher with other keys that have a
specified relation (often an xor-difference) with the original key. Actually, this kind of combined
approach has been applied to various block ciphers and some intriguing results have been
achieved for AES [18,20] and KASUMI [13,38].

Description. Let the encryption function E of the block cipher be considered as a cascade of
two sub-ciphers E = E1 ◦ E0. Assume that there exists a related-key differential α→ β for E0

under the key difference ∆Kab with probability p, i.e., (Pr[E0(P,K)⊕E0((P⊕α), (K⊕∆Kab)) =
β] = p). Similarly, assume that there exists a related-key differential γ → δ for E1 under the
key difference ∆Kac with probability q, where ∆Kab and ∆Kac are the key differences known by
the attackers. A related-key rectangle distinguisher is then as follows:

1. Choose N plaintext pairs (Pa, Pb) with Pb = Pa ⊕ α at random. Ask for the encryption of
Pa under Ka and of Pb under Kb respectively, where Kb = Ka ⊕∆Kab.

2. Choose N plaintext pairs (Pc, Pd) with Pd = Pc ⊕ α at random. Ask for the encryption
of Pc under Kc and of Pd under Kd respectively, where Kc = Ka ⊕ ∆Kac and Kd =
Kc ⊕∆Kab = Kb ⊕∆Kac.

3. For a quartet of plaintexts (Pa, Pb, Pc, Pd) with corresponding ciphertexts (Ca, Cb, Cc, Cd),
check whether Ca ⊕ Cc = Cb ⊕ Cd = δ holds or not. If yes, we call it a right rectangle
quartet. Figure 2.2 illustrates the related-key rectangle distinguisher.

The related-key rectangle attack can be mounted for all possible β’s and γ’s simultaneously.
Starting with N plaintext pairs with difference α, we expect to find N22−n(p̂q̂)2 right quartets,
where

p̂ =

√∑
β

Pr2[α→ β], q̂ =

√∑
γ

Pr2[γ → δ],

and n is the block size. For an ideal cipher, Step 3 is expected to hold with probability 2−2n.
Therefore, if p̂q̂ � 2−n/2, the algorithm above allows to distinguish E from an ideal cipher. We
refer to [12,14,15,64] for more detail.
Recently, in [90], Murphy showed that differential characteristics used for each sub-cipher
must be independent, otherwise the complexity estimation of the attack given above does not
hold. Following this result, Kim et al. [67] revisited the validity of related-key boomerang and
rectangle attacks, and pointed out that if the probabilities of any round in the differentials
used in the rectangle-type distinguisher are not extremely low, it is reasonable to assume that
the independence assumptions underlying the rectangle-type attacks are valid. Therefore, in
our analysis, we establish related-key rectangle distinguishers by choosing differentials for each
sub-cipher delicately to avoid very low probabilities of any rounds in these differentials.

Local Collisions

Figure 2.2 illustrates the related-key rectangle distinguisher. The idea of local collisions has been
first introduced by Joux and Chabaud [29] to attack hash functions. It aims to inject a difference
into an intermediate step and then to cancel the resulting differences (called disturbance) with the
injections in the next steps to obtain a collision. The goal is to reduce the complexity of the attack
by having as few disturbances as possible. This idea has been later successfully applied to block
ciphers in [18]. A local collision for one round of Rijndael-160/160 is illustrated in Figure 2.3.
We will now apply this approach in our analysis of Rijndael-160/160 and Rijndael-192/192.

HECTOR D3.3 Page 6 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

Figure 2.2: The related-key
Rectangle distinguisher

SB

SR MC

Key schedule round

Key schedule round

Disturbance

Correction

Figure 2.3: A local collision of Rijndael-160/160

2.2.4 Designing the rectangle distinguisher

The Related Keys

K0
a K1

a K2
a K3

a K4
a

K0
b K4

b

⊕∆K0
ab

⊕∆K4
ac

K4
c

K4
d

⊕∆K4
ac

Ka

Kb

Kc

Kd

Figure 2.4: The related-key computation of Rijndael-160/160

For Rijndael-160/160, we define the relation between four keys as follows (see Table 2.1). For
a secret key Ka, which the attacker tries to find, apply the subkey difference ∆K0

ab to obtain
Kb. Then we compute the subkeys K4

a and K4
b , based on which, the subkeys K4

c and K4
d can

be calculated by using the subkey difference ∆K4
ac. After that, according to the key schedule

of Rijndael-160/160, we can derive Kc and Kd from the subkeys K4
c and K4

d respectively.
This is depicted in Figure 2.4. Similarly, we can define the relation between four keys for
Rijndael-192/192 (see Table 2.2).

Rectangle Switch

Let us now focus on the transition between the top characteristic E0 and the bottom characteristic
E1 of the rectangle. This method is called switch technique [111] and it has been used to improve
the probability of boomerang distinguisher. Here, we apply this switch technique to our
rectangle distinguishers on Rijndael. Let E be (m + n)-round Rijndael cipher. Then, the

HECTOR D3.3 Page 7 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

Table 2.1: Related-key differences for Rijndael-160

∆Kr
ab

0 3f 3e 3f 3e 00 1 3f 01 3e 00 00 2 3f 3e 00 00 00 3 3f 01 01 01 01

1f 1f 1f 1f 00 1f 00 1f 00 00 1f 1f 00 00 00 1f 00 00 00 00

1f 1f 1f 1f 00 1f 00 1f 00 00 1f 1f 00 00 00 1f 00 00 00 00

21 21 21 21 00 21 00 21 00 00 21 21 00 00 00 21 00 00 00 00

∆Kr
ac

4 21 21 21 21 00 5 21 00 21 00 00 6 21 21 00 00 00 7 21 00 00 00 00

3e 3f 3e 3f 00 3e 01 3f 00 00 3e 3f 00 00 00 3e 01 01 01 01

1f 1f 1f 1f 00 1f 00 1f 00 00 1f 1f 00 00 00 1f 00 00 00 00

1f 1f 1f 1f 00 1f 00 1f 00 00 1f 1f 00 00 00 1f 00 00 00 00

8 21⊕ x∗ 21⊕ x 21⊕ x 21⊕ x 21⊕ x
3e 3f 3e 3f 3e

1f 1f 1f 1f 1f

1f 1f 1f 1f 1f
∗ x might differ for ∆K8

ac and ∆K8
bd

Table 2.2: Related-key differences for Rijndael-192

∆Kr
ab

0 ? 3e 00 00 3f 3e 1 3f 01 01 01 3e 00 2 3f 3e 3f 3e 00 00

? 1f 00 00 1f 1f 1f 00 00 00 1f 00 1f 1f 1f 1f 00 00

? 1f 00 00 1f 1f 1f 00 00 00 1f 00 1f 1f 1f 1f 00 00

? 21 00 00 21 21 21 00 00 00 21 00 21 21 21 21 00 00

3 3f 01 3e 00 00 00 4 3f 3e 00 00 00 00 5 3f 01 01 01 01 01

1f 00 1f 00 00 00 1f 1f 00 00 00 00 1f 00 00 00 00 00

1f 00 1f 00 00 00 1f 1f 00 00 00 00 1f 00 00 00 00 00

21 00 21 00 00 00 21 21 00 00 00 00 21 00 00 00 00 00

∆Kr
ac

6 00 21 21 21 21 00 7 00 21 00 21 00 00 8 00 21 21 00 00 00

00 3e 3f 3e 3f 00 00 3e 01 3f 00 00 00 3e 3f 00 00 00

00 1f 1f 1f 1f 00 00 1f 00 1f 00 00 00 1f 1f 00 00 00

00 1f 1f 1f 1f 00 00 1f 00 1f 00 00 00 1f 1f 00 00 00

9 00 21 00 00 00 00 10 x∗ 21⊕x 21⊕x 21⊕x 21⊕x 21⊕x
00 3e 01 01 01 01 00 3e 3f 3e 3f 3e

00 1f 00 00 00 00 00 1f 1f 1f 1f 1f

00 1f 00 00 00 00 00 1f 1f 1f 1f 1f
∗ x might differ for ∆K10

ac and ∆K10
bd

common application is to choose

E0 = (AK ◦MC ◦ SR ◦ SB)m

E1 = (AK ◦MC ◦ SR ◦ SB)n

However, due to the flexibility of the SB operation (i.e., it is applied to each byte in the state
independently), this choice of E0, E1 can be done in a more clever way. For instance, to minimize
the number of active S-boxes, all the active S-boxes can be discarded in the (m+ 1)th round
except those that are active for both differentials in E0 and E1. Let SB[(i, j)], SB[(i′, j′)] be the

HECTOR D3.3 Page 8 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

SB operations on the bytes (i, j) and (i′, j′) respectively. Then E0 and E1 can alternatively be
defined as follows:

E0 = SB[(i, j)] ◦ (AK ◦MC ◦ SR ◦ SB)m,

E1 = (AK ◦MC ◦ SR ◦ SB)n−1 ◦ AK ◦MC ◦ SR ◦ SB[(i′, j′)], (2.1)

where (i, j) 6= (i′, j′), and the bytes (i, j) and (i′, j′) are passive in E0 and E1 respectively.
For example, in our rectangle distinguisher of Rijndael-160/160, we take m = 2, n = 4. The
first subcipher E0 covers rounds 2–3 of Rijndael-160/160 and SB operations on 12 bytes (i, j) in
round 4, where 1 ≤ i ≤ 3 and 1 ≤ j ≤ 4; The second subcipher E1 starts with the SB operations
on 8 bytes (i′, 0), (0, j′) in round 4 (1 ≤ i′ ≤ 3, 0 ≤ j′ ≤ 4), followed by AK ◦MC ◦ SR and
rounds 5–7. Our 6-round rectangle distinguisher is illustrated in Figure 2.5.

The Rectangle Distinguisher

In the analysis of Rijndael-160/160, we use a 6-round rectangle distinguisher, and extend one
round before and after the distinguisher respectively (see Figure 2.5). Our rectangle distinguisher
covers rounds 2–7 and we use the switch technique in round 4 to avoid the active S-boxes in the
key schedule and hence to reduce the complexity of our attack. We take m = 2 and n = 4 in
Equation (2.1) to obtain E0 and E1.

The plaintext difference α is specified in 16 bytes, two of them (denoted in dark green) can take
any value whereas the remaining ones (denoted in gray) are fixed to (0x3e,0x1f,0x1f,0x21)T.
The key difference is chosen such that when it is xored to the state, all differences cancel each
other except the two bytes at (0, 0) and (0, 2) of the top characteristic. For the differences in
these two active bytes we have:

(0x01⊕ α0,i)
SB−−→ 0x1f, i ∈ {0, 2} (2.2)

This guarantees that the input differences to the S-box operations in all the internal states
(except the ones specified in Equation 2.2) are 0x01. For the active bytes in round 2 of the top
characteristic, we adopt 0x1f as the output difference of SB operation in order to achieve the
optimal differential probability 2−6. We develop the bottom characteristic by taking an similar
approach. As to the active byte in round 3 of the top characteristic, there are 127 possibilities
of the output difference for the input difference 0x01 according to the differential distribution
table of SB operation, among which one happens with the probability 2−6, the others happen
with probability 2−7. Then we construct the 6-round related-key rectangle distinguisher by
combining the 127 top characteristics and one bottom characteristic mentioned above.
The probability of the 6-round distinguisher can be computed as follows.

• There are three active S-boxes in rounds 2–3, thus the probability of the 127 differentials
for E0 can be calculated as p̂ =

√
(2−6)2·2[1 · (2−6)2 + 126 · (2−7)2] ≈ 2−10.5.

• There are five active S-boxes in rounds 4–7, thus the probability of the differential for E1

is q̂ = (2−6)5 = 2−30.

• In total, the probability of this distinguisher can be calculated as (2−10.5 · 2−30)2 · 2−160 =
2−251.

HECTOR D3.3 Page 9 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

Similarly, we find a 8-round rectangle distinguisher for Rijndael-192/192 which covers rounds
2–9, and the rectangle switch technique is applied at round 6 (see Figure 2.6). There are 9 active
S-boxes in the differential characteristics of E0 (Note that for the active S-box in round 5, all the
127 possible output differences are used to derive 127 characteristics), and the probability can be
computed as p̂ =

√
(2−6)2·8[1 · (2−6)2 + 126 · (2−7)2] ≈ 2−51.5. For the differential characteristic

of E1, there are 5 active S-boxes and the probability is q̂ = (2−6)5 = 2−30. In total, the
distinguisher holds with probability (2−51.5 · 2−30)2 · 2−192 = 2−355.
Moreover, the differences after the MC operations (denoted in gray) are given as:

0x1f

0
0
0

 MC−−→

0x3e

0x1f

0x1f

0x21

 ;

0

0x1f

0
0

 MC−−→

0x21

0x3e

0x1f

0x1f

2.2.5 Attack on 8-Round Rijndael-160/160

SB SR
MC

4 5

SB

6 7

SR
MC

SR
MC

SR
MC

SB SB SB
E1

Passive Byte Fixed Difference 0x1f 0x01 Arbitrary DifferenceUnknown Fixed Difference0x3f

1 2

SR
MC

SR
MC

SBSBSB

E0 3

SR
MC

SR

8

Figure 2.5: The related-key Rectangle attack on 8-Round Rijndael-160/160. Switch is applied
in Round 4

Based on the 6-round distinguisher for round 2–7 given in Section 2.2.4, we can now present a
key recovery attack on 8-round Rijndael-160/160 (round 1–8). The attack procedure is divided
into two phases: data collection phase and key recovery phase. We will now discuss these two
phases more in detail.

Data Collection

1. Generate 2109.5 structures Gi = {Ui, Vi} of 217 plaintexts each, where 1 ≤ i ≤ 2109.5, Ui,
Vi are the sets of 216 plaintexts of the form respectively, c′is (1 ≤ i ≤ 18) are fixed 8-bit

? c1 ? c2 c3

c4 c5 c6 c7 c8

c9 c10 c11 c12 c13

c14 c15 c16 c17 c18

and

? c1 ⊕ 3e ? c2 ⊕ 3e c3

c4 ⊕ 1f c5 ⊕ 1f c6 ⊕ 1f c7 ⊕ 1f c8

c9 ⊕ 1f c10 ⊕ 1f c11 ⊕ 1f c12 ⊕ 1f c13

c14 ⊕ 21 c15 ⊕ 21 c16 ⊕ 21 c17 ⊕ 21 c18

values and ‘?’ takes all possible values.

HECTOR D3.3 Page 10 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

2. For each structure Gi

(a) Ask for the encryption of Ui, Vi under Ka and Kb respectively to obtain G1
i =

{X1
i , Y

1
i }.

(b) Ask for the encryption of Vi, Ui under Ka and Kb respectively to obtain G2
i =

{X2
i , Y

2
i }.

(c) Ask for the encryption of Ui, Vi under Kc and Kd respectively to obtain H1
i =

{Z1
i ,W

1
i }.

(d) Ask for the encryption of Vi, Ui under Kc and Kd respectively to obtain H2
i =

{Z2
i ,W

2
i }.

(e) Let T 1a = {X1
i }1≤i≤2109.5 , T 1b = {Y 1

i }1≤i≤2109.5 , T 2a = {X2
i }1≤i≤2109.5 , T 2b = {Y 2

i }1≤i≤2109.5 ,
T 1c = {Z1

i }1≤i≤2109.5 , T 1d = {W 1
i }1≤i≤2109.5 , T 2c = {Z2

i }1≤i≤2109.5 and T 2d = {W 2
i }1≤i≤2109.5 .

3. Initialize two vectors Lac and Lbd consisting of 288 lists Lacη and Lbdη respectively, where η
corresponds to a 11-byte value (i.e., the bytes (1,4) and (i, j) of a ciphertext, where 2 ≤
i ≤ 3, 0 ≤ j ≤ 4), Lacη = {Saη , Scη, Na

η , N
c
η}, Lbdη = {Sbη, Sdη , N b

η , N
d
η }, Saη , Sbη, Scη, Sdη are the

sets of ciphertexts under Ka, Kb, Kc and Kd respectively as well as their structure indices,
and Na

η , N
b
η , N

c
η , N

d
η denote the cardinalities of the sets Saη , S

b
η, S

c
η and Sdη respectively.

4. For each ciphertext in T 1a, extract the 88-bit value η, then insert the ciphertext and its
structure index into the set Saη of the corresponding list Lacη and increase Na

η by 1. For
each ciphertext in T 1c, xor it with

00 00 00 00 00

00 00 00 00 3e

1f 1f 1f 1f 1f

1f 1f 1f 1f 1f

and then extract the 88-bit value η. After that, insert the ciphertext and its structure
index into the set Scη of the corresponding list Lacη and increase N c

η by 1. Do similarly for
the ciphertexts in T 1b, T 1d and update the lists Lbdη .

5. Keep the lists Lacη in which both Na
η and N c

η are non-zero, and keep the lists Lbdη in which
both N b

η and Nd
η are non-zero. Then derive the ciphertext quartets (Ca, Cb, Cc, Cd) from

the remaining lists Lacη and Lbdη by using following criteria:

(a) Ca, Cc are chosen from the same list Lacη , and Cb, Cd come from the same list Lbdη′ .

(b) The structure indices of Ca and Cb are the same, and the structure indices of Cc and
Cd are the same.

We obtain around (216 · 216 · 2109.5)2 · (2−88)2 = 2107 ciphertext quartets (Ca, Cb, Cc, Cd) and
their plaintext quartets (Pa, Pb, Pc, Pd) in this step.

6. For each of the 2107 quartets (Ca, Cb, Cc, Cd), check whether the following conditions

(Ca ⊕ Cc)0,0 = (Ca ⊕ Cc)0,1 = . . . = (Ca ⊕ Cc)0,4

HECTOR D3.3 Page 11 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

and
(Cb ⊕ Cd)0,0 = (Cb ⊕ Cd)0,1 = . . . = (Cb ⊕ Cd)0,4

hold or not. If not, discard the quartet. The expected number of remaining quartets after
this step is about 2107 · (2−32)2 = 243.

7. Repeat Steps 4−6 three times for (T 1a, T 1b, T 2c, T 2d), (T 2a, T 2b, T 1c, T 1d) and (T 2a, T 2b, T 2c, T 2d).

With the above procedure we get about 243 · 4 = 245 ciphertext quartets (Ca, Cb, Cc, Cd) and
their plaintext quartets (Pa, Pb, Pc, Pd).

Key Recovery

8. Guess the subkey bytes (Ka)0,j, (Kc)0,j (j ∈ {0, 2}) as follows:

(a) guess (Ka)0,0, (Kc)0,0 and calculate the values of (Kb)0,0, (Kd)0,0 by using Table 2.1.

(b) guess (Ka)0,2, (Kc)0,2 and derive the values of (Kb)0,2, (Kd)0,2 from Table 2.1.

For each of the remaining quartets in substeps (a)–(b), test whether the corresponding
equations

SB((Pa)0,j ⊕ (Ka)0,j)⊕ SB((Pb)0,j ⊕ (Kb)0,j) = 1f

SB((Pc)0,j ⊕ (Kc)0,j)⊕ SB((Pd)0,j ⊕ (Kd)0,j) = 1f

are satisfied or not. If not, discard the quartet. After this step, the number of remaining
quartets is about 245 · (2−8)4 = 213.

9. Guess the subkey bytes (K7
a)1,4, (K7

b)1,4, (K8
a)1,j, (K8

b)1,j (0 ≤ j ≤ 3) and obtain the
values of (K7

c)1,4, (K7
d)1,4, (K8

c)1,j , (K8
d)1,j according to Table 2.1. Then for each remaining

quartet (Ca, Cb, Cc, Cd), verify whether the following equations

SB((K7
a)1,4)⊕ SB((K7

c)1,4)⊕ (Ca)0,0 ⊕ (Cc)0,0 = 21

SB((K7
b)1,4)⊕ SB((K7

d)1,4)⊕ (Cb)0,0 ⊕ (Cd)0,0 = 21

SB−1((Ca)1,j ⊕ (K8
a)1,j)⊕ SB−1((Cc)1,j ⊕ (K8

c)1,j) = 01

SB−1((Cb)1,j ⊕ (K8
b)1,j)⊕ SB−1((Cd)1,j ⊕ (K8

d)1,j) = 01

hold or not. If not, remove the quartet.

10. If the number of the remaining quartets after above steps is two or more, output the
corresponding 14 guessed subkey bytes (Ka)0,j1 , (Kc)0,j1 , (K7

a)1,4, (K7
b)1,4, (K8

a)1,j2 and
(K8

b)1,j2 (j1 ∈ {0, 2}, 0 ≤ j2 ≤ 3) as the correct key information. Otherwise, return to
Step 8 and repeat the procedure.

11. If the above 14 subkey bytes are retrieved after Step 10, perform an exhaustive search
over all possible values of the remaining 128 bits of K8

a so as to recover the secret key.

HECTOR D3.3 Page 12 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

Analysis of the attack on 8-Round Rijndael-160/160

In Step 9, ten equations (each with probability 2−8) need to be satisfied. Therefore, for a
wrong guess of the above 14 subkey bytes, the expected number of quartets after Step 9 is
213 · (2−8)10 = 2−67. On the other hand, for a right guess of the key, the expected number of
right quartets is about

(216 · 216 · 2109.5)2 · 4 · (2−16)2 · 2−251 = 22.

This means that we can discard all the wrong subkeys (since the expected number of remaining
quartets for a wrong subkey is 2−67) and find the right 14 subkey bytes.
The probability of outputting a wrong key guess in Step 10 is derived by the following Poisson
distribution:

X ∼ Poi(λ = 2−67).

As Pr[X ≥ 2] ≈ 2−135, the expected number of wrong key guesses suggested in Step 10 is about
(28)14 · 2−135 = 2−23, and the wrong key information can be easily removed in Step 11. Similarly,
the probability that two or more quartets remain after Step 10 for the correct key guess is also
computed by the Poisson distribution:

X ∼ Poi(λ = 4).

Since Pr[X ≥ 2] ≈ 0.91, the success probability of the attack on 8-round Rijndael-160/160 is
approximately 91%.
The data complexity of this attack is 2109.5 · 217 = 2126.5 chosen plaintexts which are encrypted
under Ka, Kb, Kc and Kd respectively (resulting in 2126.5 · 4 = 2128.5 ciphertexts). The memory
complexity is primarily owing to keeping T 1a, T 1b, T 1c, T 1d, T 2a, T 2b, T 2c and T 2d, thus it can
be estimated as 8 · 2125.5 · 20 ≈ 2132.82 bytes. The time complexity of the attack can be derived
as follows:

• The time complexity of the data collection phase is mainly dominated by Step 2 and Step
4. For Step 2, the time complexity is 2126.5 · 4 = 2128.5 8-round Rijndael-160 encryptions.
As to Step 4, the time complexity is about 2125.5 · 8 = 2128.5 memory accesses, which can
be measured as 2128.5 · 1

20·8 ≈ 2121.18 8-round Rijndael-160 encryptions.

• The time complexity of the key recovery phase is mainly dominated by Step 9 and Step 11.
For Step 9, the time complexity can be estimated as 2112 · 213 · 20

20·8 = 2122 8-round
Rijndael-160 encryptions. Regarding Step 11, the time complexity is about 2128 8-round
Rijndael-160 encryptions.

As a result, the total time complexity of the attack is approximately 2129.28 8-round Rijndael-160
encryptions.

2.2.6 Attack on 10-Round Rijndael-192/192

Based on the 8-round distinguisher for round 2–9 given in Section 2.2.4, we now present a key
recovery attack on 10-round Rijndael-192/192 (round 1–10). Similarly as the attack on 8-round
Rijndael-160/160, the attack procedure is divided into two phases: data collection phase and
key recovery phase.

HECTOR D3.3 Page 13 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

SB SR
MC 6 7

SB

8 9

SR
MC

SR
MC

SR
MC

SB SB SB
E1

Passive Byte Fixed Difference 0x1f 0x01 Arbitrary DifferenceUnknown Fixed Difference0x3f

SB SR
MC 1 2 3 4

SR
MC

SR
MC

SR
MC

SBSBSBSB

E0 5

SR
MC

SR

10

Figure 2.6: The related-key Rectangle attack on 10-Round Rijndael-192/192. Switch is applied
in Round 6

? c1 c2 c3 ? c4

? c5 c6 c7 c8 c9

? c10 c11 c12 c13 c14

? c15 c16 c17 c18 c19

and

? c1⊕3e c2 c3 ? c4⊕3e
? c5⊕1f c6 c7 c8⊕1f c9⊕1f
? c10⊕1f c11 c12 c13⊕1f c14⊕1f
? c15⊕21 c16 c17 c18⊕21 c19⊕21

Data Collection

1. Generate 2138 structures Gi = {Ui, Vi} of 241 plaintexts each, where 1 ≤ i ≤ 2138, Ui, Vi
are the sets of 240 plaintexts of the form respectively, c′is (1 ≤ i ≤ 16) are fixed 8-bit values
and ‘?’ takes all possible values.

2. For each structure Gi

(a) Ask for the encryption of Ui, Vi under Ka and Kb respectively to obtain G1
i =

{X1
i , Y

1
i }.

(b) Ask for the encryption of Vi, Ui under Ka and Kb respectively to obtain G2
i =

{X2
i , Y

2
i }.

(c) Ask for the encryption of Ui, Vi under Kc and Kd respectively to obtain H1
i =

{Z1
i ,W

1
i }.

(d) Ask for the encryption of Vi, Ui under Kc and Kd respectively to obtain H2
i =

{Z2
i ,W

2
i }.

(e) Let T 1a = {X1
i }1≤i≤2138 , T 1b = {Y 1

i }1≤i≤2138 , T 2a = {X2
i }1≤i≤2138 , T 2b = {Y 2

i }1≤i≤2138 ,
T 1c = {Z1

i }1≤i≤2138 , T 1d = {W 1
i }1≤i≤2138 , T 2c = {Z2

i }1≤i≤2138 and T 2d = {W 2
i }1≤i≤2138 .

3. Initialize two vectors Lac and Lbd consisting of 2112 lists Lacη and Lbdη respectively, where η
corresponds to a 14-byte value (i.e., the bytes (1,0), (1,5) and (i, j) of a ciphertext, where
2 ≤ i ≤ 3, 0 ≤ j ≤ 5), Lacη = {Saη , Scη, Na

η , N
c
η}, Lbdη = {Sbη, Sdη , N b

η , N
d
η }, Saη , Sbη, Scη, Sdη are

the sets of ciphertexts under Ka, Kb, Kc and Kd respectively as well as their structure in-
dices, and Na

η , N
b
η , N

c
η , N

d
η denote the cardinalities of the sets Saη , S

b
η, S

c
η and Sdη respectively.

4. For each ciphertext in T 1a, extract the 112-bit value η, then insert the ciphertext and its
structure index into the set Saη of the corresponding list Lacη and increase Na

η by 1. For
each ciphertext in T 1c, xor it with

HECTOR D3.3 Page 14 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

00 00 00 00 00 00

00 00 00 00 00 3e

00 1f 1f 1f 1f 1f

00 1f 1f 1f 1f 1f

and then extract the 112-bit value η. After that, insert the ciphertext and its structure
index into the set Scη of the corresponding list Lacη and increase N c

η by 1. Do similarly for
the ciphertexts in T 1b, T 1d and update the lists Lbdη .

5. Discard the lists Lacη in which Na
η or N c

η is 0, and remove the lists Lbdη in which N b
η or Nd

η

is 0. For each remaining list Lacη , initialize 248 lists Lacη,θ = {Saη,θ, Scη,θ, Na
η,θ, N

c
η,θ} defined

similarly to Lacη , where θ corresponds to a 6-byte value (i.e., the bytes (0, j), 0 ≤ j ≤ 5),
then do the following:

(a) For each ciphertext in Saη , extract the 48-bit value θ, then insert the ciphertext and
its structure index into the set Saη,θ of the corresponding list Lacη,θ and increase Na

η,θ

by 1.

(b) Let δ1, δ2, . . . , δ127 denote all possible output differences of the S-Box for the input
difference 01. For each ciphertext in Scη, xor it with

00 21 21 21 21 21

00 00 00 00 00 00

00 00 00 00 00 00

00 00 00 00 00 00

and then extract the 48-bit value θ. After that, insert the ciphertext and its structure
index into the set Scη,θ1 , S

c
η,θ2

, . . ., Scη,θ127
of the lists Lacη,θ1 , L

ac
η,θ2

, . . ., Lacη,θ127
and

increase N c
η,θ1

, N c
η,θ2

, . . ., N c
η,θ127

by 1 respectively, where θ1, . . ., θ127 denote θ ⊕
(δ1‖δ1‖δ1‖δ1‖δ1‖δ1), . . ., θ ⊕ (δ127‖δ127‖δ127‖δ127‖δ127‖δ127) respectively.

For each remaining list Lbdη , do similarly to get the lists Lbdη,θ.

6. Keep the lists Lacη,θ in which both Na
η,θ and N c

η,θ are non-zero, and keep the lists Lbdη,θ in

which both N b
η,θ and Nd

η,θ are non-zero. Then derive the ciphertext quartets (Ca, Cb, Cc, Cd)

from the remaining lists Lacη,θ and Lbdη,θ by using following criteria:

(a) Ca, Cc are chosen from the same list Lacη,θ, and Cb, Cd come from the same list Lbdη′,θ′ .

(b) The structure indices of Ca and Cb are the same, and the structure indices of Cc and
Cd are the same.

7. Repeat Steps 4−6 three times for (T 1a, T 1b, T 2c, T 2d), (T 2a, T 2b, T 1c, T 1d) and (T 2a, T 2b, T 2c, T 2d).

With the above procedure we obtain around

(240 · 240 · 2138)2 · (2−112)2 · (127

248
)2 · 4 ≈ 2132

ciphertext quartets (Ca, Cb, Cc, Cd) and their plaintext quartets (Pa, Pb, Pc, Pd).

HECTOR D3.3 Page 15 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

Key Recovery

8. Let t1, t
′
1 denote SB((Ka)2,5)⊕SB((Ka)2,5⊕1f)⊕1f and SB((Kc)2,5)⊕SB((Kc)2,5⊕1f)⊕1f

respectively. Guess the subkey bytes (Ka)2,5, (Kc)2,5 and calculate the values of t1 and t′1.
Then for each quartet (Pa, Pb, Pc, Pd), check whether the equations

(Pa)1,0 ⊕ (Pb)1,0 ⊕ t1 = 0

(Pc)1,0 ⊕ (Pd)1,0 ⊕ t′1 = 0

hold or not. If not, discard the quartet.

9. Let t2, t
′
2 denote SB((Ka)3,5)⊕SB((Ka)3,5⊕21)⊕1f and SB((Kc)3,5)⊕SB((Kc)3,5⊕21)⊕1f

respectively. Guess the subkey bytes (Ka)3,5, (Kc)3,5 and compute the values of t2 and t′2.
Then for each remaining quartet (Pa, Pb, Pc, Pd), test whether the equations

(Pa)2,0 ⊕ (Pb)2,0 ⊕ t2 = 0

(Pc)2,0 ⊕ (Pd)2,0 ⊕ t′2 = 0

hold or not. If not, remove the quartet.

10. Let t3, t
′
3 denote SB((Ka)0,5)⊕SB((Ka)0,5⊕3e)⊕21 and SB((Kc)0,5)⊕SB((Kc)0,5⊕3e)⊕21

respectively. Guess the subkey bytes (Ka)0,5, (Kc)0,5 and derive the values of t3 and t′3.
Then for each remaining quartet (Pa, Pb, Pc, Pd), verify whether the equations

(Pa)3,0 ⊕ (Pb)3,0 ⊕ t3 = 0

(Pc)3,0 ⊕ (Pd)3,0 ⊕ t′3 = 0

hold or not. If not, discard the quartet.

11. Guess the subkey bytes (Ka)0,4, (Kc)0,4. Then for each remaining quartet (Pa, Pb, Pc, Pd),
check whether the equations

SB((Pa)0,4 ⊕ (Ka)0,4)⊕ SB((Pb)0,4 ⊕ (Ka)0,4 ⊕ 3f) = 1f

SB((Pc)0,4 ⊕ (Kc)0,4)⊕ SB((Pd)0,4 ⊕ (Kc)0,4 ⊕ 3f) = 1f

hold or not. If not, remove the quartet.

12. Guess the subkey bytes (Ka)0,0, (Kb)0,0, (Kc)0,0, (Kd)0,0. Then for each remaining quartet
(Pa, Pb, Pc, Pd), test whether the equations

SB((Pa)0,0 ⊕ (Ka)0,0)⊕ SB((Pb)0,0 ⊕ (Kb)0,0) = 1f

SB((Pc)0,0 ⊕ (Kc)0,0)⊕ SB((Pd)0,0 ⊕ (Kd)0,0) = 1f

hold or not. If not, remove the quartet.

13. Now we still have about 2132×(2−8)10 = 252 plaintext quartets and their ciphertext quartets.
Let t4, t

′
4 denote SB((K9

a)1,5) ⊕ SB((K9
a)1,5 ⊕ 01) and SB((K9

b)1,5) ⊕ SB((K9
b)1,5 ⊕ 01)

respectively, then t4, t
′
4 ∈ {δ1, . . . , δ127}. Guess the subkey bytes (K9

a)1,5, (K9
b)1,5 and

HECTOR D3.3 Page 16 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

calculate the values of t4 and t′4. Then for each remaining quartet (Ca, Cb, Cc, Cd), verify
whether the equations

(Ca)0,0 ⊕ (Cc)0,0 ⊕ t4 = 0

(Cb)0,0 ⊕ (Cd)0,0 ⊕ t′4 = 0

hold or not. If not, remove the quartet. Otherwise, (Ca)0,i ⊕ (Cc)0,i = (∆K10
ac)0,i and

(Cb)0,i ⊕ (Cd)0,i = (∆K10
bd)0,i hold for 1 ≤ i ≤ 5 according to Steps 5-6. Note that

(Ca)0,0 ⊕ (Cc)0,0, (Cb)0,0 ⊕ (Cd)0,0 ∈ {δ1, . . . , δ127}, thus the expected number of remaining
quartets after this step is 252 · (2−7)2 = 238.

14. Guess the subkey bytes (K10
a)1,j, (K10

b)1,j (1 ≤ j ≤ 4) as follows:

(a) guess (K10
a)1,1, (K10

b)1,1 and calculate the values of (K10
c)1,1, (K10

d)1,1 by using Table
2.2.

(b) guess (K10
a)1,2, (K10

b)1,2 and derive the values of (K10
c)1,2, (K10

d)1,2 from Table 2.2.

(c) guess (K10
a)1,3, (K10

b)1,3, (K10
a)1,4, (K10

b)1,4 and use Table 2.2 to obtain the values of
(K10

c)1,3, (K10
d)1,3, (K10

c)1,4, (K10
d)1,4.

For each of the remaining quartets in substeps (a)–(c), check whether the corresponding
equations

SB−1((Ca)1,j ⊕ (K10
a)1,j)⊕ SB−1((Cc)1,j ⊕ (K10

c)1,j) = 01

SB−1((Cb)1,j ⊕ (K10
b)1,j)⊕ SB−1((Cd)1,j ⊕ (K10

d)1,j) = 01

are satisfied or not. If not, discard the quartet.

15. If the number of the remaining quartets after above steps is six or more, output the
corresponding 22 guessed subkey bytes (Ka)i,5, (Kc)i,5, (Ka)0,4, (Kc)0,4, (Ka)0,0, (Kb)0,0,
(Kc)0,0, (Kd)0,0, (K9

a)1,5, (K9
b)1,5, (K10

a)1,j and (K10
b)1,j (i ∈ {0, 2, 3}, 1 ≤ j ≤ 4) as the

correct key information. Otherwise, return to Step 8 and repeat the procedure.

16. If the above 22 subkey bytes are retrieved after Step 15, perform an exhaustive search
over all possible values of the remaining 152 bits of Ka so as to recover the secret key.

Analysis of the attack on 10-Round Rijndael-192/192

The expected number of remaining quartets after each substep in Step 14 is given as (a)
238 · (2−8)2 = 222, (b) 222 · (2−8)2 = 26 and (c) 26 · (2−8)4 = 2−26, respectively. Thus for a wrong
guess of the above 22 subkey bytes, the expected number of quartets after Step 14 is 2−26. On
the other hand, for a right guess of the key, the expected number of right quartets is about

(240 · 240 · 2138)2 · 4 · (2−40)2 · 2−355 = 23.

The probability of outputting a wrong key guess in Step 15 is derived by the following Poisson
distribution:

X ∼ Poi(λ = 2−26).

As Pr[X ≥ 6] ≈ 2−165.49, the expected number of wrong key guesses suggested in Step 15 is about
(28)22 · 2−165.49 = 210.51, and the wrong key information can be removed in Step 16. Similarly,

HECTOR D3.3 Page 17 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

the probability that six or more quartets remain after Step 14 for the correct key guess is also
computed by the Poisson distribution:

X ∼ Poi(λ = 8).

Since Pr[X ≥ 6] ≈ 0.81, the success probability of the attack on 10-round Rijndael-192 is
approximately 81%.
The data complexity of this attack is 2138 · 241 = 2179 chosen plaintexts which are encrypted
under Ka, Kb, Kc and Kd respectively (resulting in 2179 · 4 = 2181 ciphertexts). The memory
complexity is primarily owing to keeping T 1a, T 1b, T 1c, T 1d, T 2a, T 2b, T 2c and T 2d, thus it can
be estimated as 8 · 2178 · 24 ≈ 2185.59 bytes. The time complexity of the attack can be derived as
follows:

• During the data collection phase, the time complexity is mainly dominated by Step 2,
which is 2179 · 4 = 2181 10-round Rijndael-192 encryptions.

• For the key recovery phase, the time complexity is mainly dominated by Step 14, which
can be measured as 2176 · 26 · 8

24·10
≈ 2177.09 10-round Rijndael-192 encryptions.

As a result, the total time complexity of the attack is approximately 2181.09 10-round Rijndael-192
encryptions.

2.3 Subkey Recovery on CAESAR candidate iFeed

2.3.1 Introduction

iFeed is one of first round CAESAR submissions, proposed by Zhang et al. [118]. It is an
AES block cipher-based design which combines PMAC-style authentication with dedicated
encryption. iFeed processes the data in an on-line manner and it is inverse-free, meaning that
both encryption and decryption only use the block cipher in forward direction. The design is
inherently nonce-based: the authors claim and prove confidentiality and authenticity of iFeed in
a setting where the adversary is not allowed to make repeated queries under the same nonce. We
refer to this setting and type of adversary as nonce-respecting. The design is moreover claimed
to achieve confidentiality under some conditions also in the nonce-reuse setting.
Chakraborti et al. [30] recently presented forgeries on iFeed both in the nonce-reuse setting, and
in a setting where the adversary is granted access to ciphertext decryptions irrespective of the
verification result, also known as the release of unverified plaintext (RUP) setting from [2]. The
iFeed designers, however, do not claim any security against these properties, and the attacks
from Chakraborti et al. do not invalidate the security of iFeed. The work presented in this
section exploits the unfortunate repetition of subkeys at the finalization of the associated data
and plaintext. This leads to a total security break and also invalidates the security claims
and proofs posited by the designers of iFeed. The attack uses only one encryption query with
no associated data and an arbitrary n-bit (or single block) plaintext. The attack also allows
to recover the values of two subkeys, which then can be used to recover plaintext from old
encryptions, even though they were performed under a different nonce. The results of this
section were published at SAC 2015 [105].

2.3.2 Description of iFeed

iFeed uses the secret key K to derive two subkeys: a nonce-independent Z0 = EK(0128) and its
multiples Zi = 2i · Z0, and a nonce-dependent U = EK(PMN ‖10∗) where PMN is a variable

HECTOR D3.3 Page 18 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

Algorithm 1 iFeed E for |PMN | = 127, |A| = 0, and |P1| = n

1: Z0 = EK(0128)
2: for i = 1, . . . , 3 do
3: Zi = 2 · Zi−1

4: U = EK(PMN ‖1)
5: TA = 0128

6: C1 = EK(Z3 ⊕ U)⊕ P1

7: C2 = EK(P1 ⊕ Z2 ⊕ U)
8: return (C, T) = (C1, TA ⊕ C2)

public message number (nonce) and 10∗ is the padding to a full 128-bit block with one 1 bit and
appropriate number of 0 bits. The processing of the associated data and of the message are done
independently of each other, both resulting in a subtag. The XOR of the two subtags produces
the final tag. The general encryption and decryption procedures of iFeed are given in Figures
2.7 and 2.8, respectively. The processing of the associated data is distinctively independent of
the nonce: the inputs to the block cipher E are masked only using Zi. The data is encrypted
using both the Zi and U . One design choice of iFeed is that the computation of the subtags is
performed using the same subkeys: Z1 or Z2 for the associated data, and Z1 ⊕ U and Z2 ⊕ U
for the plaintext.
The attacks we will describe below, are generic and do not exploit any weakness of AES-128.
Therefore, from now we simply describe iFeed based on any block cipher E : {0, 1}n×{0, 1}n →
{0, 1}n, where n = 128. iFeed is on-line, it only uses E in forward direction (inverse-free), and it
allows for parallelized encryption.
The scheme is keyed via a key K ∈ {0, 1}n. It operates on public message numbers PMN of size
between 1 and 127 bits, associated data A in {0, 1}≤|A|max , and plaintexts/ciphertexts P/C from
{0, 1}≤|P |max , where |A|max and |P |max are some large values which sum to at most (271 − 512).
The tag T is of size 32 ≤ τ ≤ n = 128. In the nonce-respecting setting, the public message
number is required to be unique for every query to the iFeed encryption function E . The iFeed
encryption E and decryption D functions are depicted in Figure 2.7 and 2.8, respectively. Here,
Pad(X) equals X if |X| = n and X‖10n−1−|X| if |X| < n, and the usage of Z1 versus Z2 (resp. Z ′1
versus Z ′2) depends on the last block of A (resp. P): Z2/Z

′
2 is used if the last data block is of

size n bits, Z1/Z
′
1 is used if the last block is fractional. We remark that our attacks use integral

blocks only, for which Pad(X) = X and Z2 is used instead of Z1.
For the presentation of the attacks, however, it suffices to only discuss a simplified version
of iFeed. In more detail, in our attacks we will only query E on input of n-bit plaintext and
no associated data. We also make the forgery queries to D for either n or 2n-bit associated
data and 2n-bit ciphertext. All queries consider 127-bit PMN and tag size τ = n = 128. In
Algorithms 1 and 2, we give a formal description of iFeed’s E and D, respectively, for the input
sizes relevant for our attacks. We refer to [118] for the general description of iFeed, and stress
that our attacks easily translate to the general case.
The iFeed mode makes use of secret subkey Z0 = EK(0128) which is used to derive additional
subkeys Zi = 2 · Zi−1. Here, the multiplication is performed in the binary Galois Field GF(2128)
defined by the primitive polynomial x128 + x7 + x2 + x+ 1.

HECTOR D3.3 Page 19 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

Figure 2.7: iFeed encryption E . All wires represent n-bit values. The output is the ciphertext
C1 · · ·C` and the tag T = leftτ (TA ⊕ C`+1)

2.3.3 Forgery and Subkey Recovery Attack on iFeed

Let K
$←− {0, 1}n be the secret key and consider τ = n. We present our forgery attack on iFeed.

It consists of one encryption query and the forgery itself. Upon successful verification, the
forgery will disclose the subkeys Z0 = EK(0128) and U = EK(PMN ‖1).

• Fix arbitrary PMN ∈ {0, 1}127 and arbitrary P1 ∈ {0, 1}128, and make encryption query
with no associated data A = ε:

(C1, T) = EK(PMN , ε, P1) ;

• Write C ′1 = C1⊕ P1⊕PMN ‖1, and fix an arbitrary C ′2 ∈ {0, 1}128. Set A = C ′2, T ′ = 0128,
and output forgery:

DK(PMN , A, C ′1C
′
2, T

′) .

We next demonstrate that the forgery attempt is successful. First, regarding the encryption
query, note that

C1 = EK(Z3 ⊕ U)⊕ P1 . (2.3)

HECTOR D3.3 Page 20 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

Figure 2.8: iFeed decryption D. All wires represent n-bit values. The output is the plaintext
P1 · · ·P` when T is leftτ (TA ⊕ C`+1)

Now, verification of the forgery (cf. Algorithm 2) succeeds if T ′ = T ′A ⊕C ′3 = 0128. Note that we
have

P ′1 = EK(Z3 ⊕ U)⊕ C ′1 ⊕ Z4 ⊕ U
= PMN ‖1⊕ Z4 ⊕ U ,

P ′2 = EK(P ′1 ⊕ Z4 ⊕ U)⊕ C ′2
= EK(PMN ‖1)⊕ C ′2 = U ⊕ C ′2 ,

C ′3 = EK(P ′2 ⊕ Z2 ⊕ U)

= EK(C ′2 ⊕ Z2) .

As we defined A = C ′2, this yields successful verification:

T ′A = EK(A⊕ Z2) = EK(C ′2 ⊕ Z2) = C ′3 .

As verification is successful, D returns P ′1P
′
2. The values U = P ′2 ⊕ C ′2 and Z0 = 2−4(P ′1 ⊕

PMN ‖1⊕ U) are directly obtained.

2.3.4 Finding EK(P ∗) for Any Plaintext P ∗

Once the subkeys U , Z0 are known, by performing the main forgery attack described above, one
is able to learn EK(P ∗) for any plaintext data P ∗ ∈ {0, 1}n and to perform additional forgeries.

HECTOR D3.3 Page 21 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

Algorithm 2 iFeed D for |PMN | = 127, |A′| = n or 2n, and |C ′| = 2n

1: Z0 = EK(0128)
2: for i = 1, . . . , 4 do
3: Zi = 2 · Zi−1

4: U = EK(PMN ‖1)
5: if |A′| = n then
6: define A′1 = A′

7: T ′A = EK(A′1 ⊕ Z2)
8: else
9: parse A′1A

′
2 = A′

10: T ′A = EK(EK(A′1 ⊕ Z3)⊕ A′2 ⊕ Z2)

11: parse C ′1C
′
2 = C ′

12: P ′1 = EK(Z3 ⊕ U)⊕ C ′1 ⊕ Z4 ⊕ U
13: P ′2 = EK(P ′1 ⊕ Z4 ⊕ U)⊕ C ′2
14: C ′3 = EK(P ′2 ⊕ Z2 ⊕ U)
15: if T ′ = T ′A ⊕ C ′3 then
16: return P ′ = P ′1P

′
2

17: else
18: return ⊥

• Let PMN be as before, define (A′′1, A
′′
2) = (P ∗⊕Z3, U), (C ′′1 , C

′′
2) = (EK(Z3⊕U)⊕P ∗, 0128),

and T = 0128, and output forgery:

DK(PMN , A′′1A
′′
2, C

′′
1C
′′
2 , T

′′) .

The verification (cf. Algorithm 2) is successful if T ′′ = T ′′A ⊕ C ′′3 = 0128. Note that we have

P ′′1 = EK(Z3 ⊕ U)⊕ C ′′1 ⊕ Z4 ⊕ U
= P ∗ ⊕ Z4 ⊕ U ,

P ′′2 = EK(P ′′1 ⊕ Z4 ⊕ U)⊕ C ′′2
= EK(P ∗) ,

C ′′3 = EK(P ′′2 ⊕ Z2 ⊕ U)

= EK(EK(P ∗)⊕ Z2 ⊕ U) .

On the other hand, T ′′A is computed from the two-block (A′′1A
′′
2) as follows

T ′′A = EK(EK(A′′1 ⊕ Z3)⊕ A′′2 ⊕ Z2)

= EK(EK(P ∗)⊕ Z2 ⊕ U) ,

thus C ′′3 = T ′′A, and the verification is successful. The resulting plaintext satisfies P ′′2 = EK(P ∗).
This attack works for any n-bit data block P ∗, it can for instance be used to recover the subkeys
of older iFeed encryptions (by putting P ∗ = PMN ′‖10∗ 6= PMN ‖1), and indirectly to decrypt
earlier encryptions without having possession of the key K.

2.3.5 Discussion

The attack of Section 2.3.3 is possible due to two main iFeed properties:

HECTOR D3.3 Page 22 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

1. iFeed uses Z2 as masking in both the T ′A and C ′l+1;

2. The second last ciphertext block (C1 in our encryption example) is not masked with Z4⊕U
as other ciphertext blocks.

Using these properties, the forgery is constructed in such a way upon decryption, PMN ‖1 is
directly fed into EK and the term U in the final mask Z2 ⊕ U is canceled out.
At a high level, the flaw is caused by an oversight that the subkeys for the associated data
and the plaintext are dependent. Indeed, the associated data is masked with Z1, . . . , Za+2 and
the plaintext with Z1 ⊕ U, . . . , Z`+2 ⊕ U (where a and ` denote the number of associated data
and plaintext blocks). For the decryption query, the proof claims that both TA and C`+1 is
randomly generated except with a small probability.1 These two cases independently of each
other rely on the randomness of Z0. In our attacks, TA and C`+1 are, indeed, both newly and
randomly generated. However, their drawing is not independent, in fact, they satisfy TA = C`+1.
This security analysis clearly illustrates the serious security problems that could be caused by
relations that hold between secret values used in the cryptographic algorithm, while implicitly
the security claims rely on the (wrong) assumption that these are independent and random.

2.4 Related-Tweakey Differential Attack on MANTIS-5

2.4.1 Introduction

Related Keys and Tweakable Block Ciphers

Tweakable block ciphers (TBCs) [76] generalize block ciphers by adding an additional public
input, the tweak. This tweak serves as an additional “diversifier” and thus plays a role similar
to the nonces of authenticated encryption (AEAD) schemes: Each value of the tweak defines a
different family of permutations, i.e., a different block cipher. Recent advances in the design of
authenticated ciphers have shown that this additional input makes TBCs a very useful building
block for AEAD schemes with high performance and simpler, more elegant proofs.
Several generic constructions of TBCs from block ciphers have been proposed, but unfortunately
those are usually either not very efficient (e.g., needing multiple block cipher calls) or provide
only birthday-bound security. Practical ad-hoc constructions try to achieve the best of both
(efficiency and security) by tightly integrating the tweak with the block cipher operations.
The TWEAKEY framework [60] is one of the most widely used ad-hoc constructions and
incorporates the tweak as part of the key schedule. Since the tweak input is considered under
full control of the adversary, choosing related tweaks creates a cryptanalytic setting closely tied
to related keys.
In this section, we investigate the security implications of these “related tweakeys”. We show
that the classical metrics for security against differential cryptanalysis are not sufficient. We
propose a class of differential characteristics that targets the “related tweakeys” by combining
advantages of both classical differential characteristics (e.g., profiting from suboptimal S-box
properties) and truncated differential characteristics (e.g., clustering to improve the differential
probability and decrease the data complexity).

1In fact, it is claimed that Pw+1 is random, where w is the first block in the forgery that is different from the
older encryption query with the same nonce, and that all subsequent values Pw+2, . . . , P`, C`+1 are random.

HECTOR D3.3 Page 23 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

Application to MANTIS

MANTIS is a tweakable block cipher published at CRYPTO 2016 by Beierle et al. [8]. The
designers’ goal is to optimize this versatile building block for low-latency implementations. To
this end, they use the same α-reflective structure as PRINCE by Borghoff et al. [25], but combine
it with the round function of Midori by Banik et al. [6]. According to their analysis [8], this
improves both the latency and the security compared to the original PRINCE, since Midori’s
variant of ShiftRows leads to a higher bound on the minimum number of active S-boxes. The
tweak is incorporated using an adapted version of the TWEAKEY framework by Jean et al. [60].
The full version MANTIS7 has 14 rounds, but the authors also give a reduced security claim
for the 10-round version, MANTIS5. They claim security against practical attacks, which they
define as related-tweak attacks with data complexity 2d less than 230 chosen plaintexts (or 240

known plaintexts), and computational complexity at most 2126−d block cipher calls, similar to
the PRINCE challenge. We present a key-recovery attack against MANTIS5 with 228 chosen
plaintexts and a computational complexity of about 238 block cipher calls, which violates this
claim.
Our attack exploits the lightweight near-MDS mixing layer and certain differential properties
of the involutive S-box, both inherited from Midori. These properties make it relatively easy
to find a differential characteristic with the claimed optimal probability in the related-tweak
setting. Using the same properties, this differential characteristic can then be expanded to a
family of characteristics with a corresponding initial structure that makes efficient use of the low
data complexity limit of only 230 chosen plaintexts. Furthermore, the choice to keep the original
Midori order of linear operations (first permute, then mix) makes the PRINCE-like middle rounds
differentially less effective than the ordering used by PRINCE (first mix, then permute). Midori’s
order preserves a Superbox structure over 4 S-box layers in the middle rounds, instead of 2.
We verified the validity of the attack in a practical implementation. The implementation revealed
an additional differential property of the Midori S-box that complicates some steps of the attack
due to differentially equivalent keys. In particular, we found that slightly increasing either
the memory requirements or the data complexity (still respecting the data limit) significantly
increases the robustness of the attack. An adapted version of the attack recovers the full key in
about 1 core hour using about 230 chosen plaintexts.
The results of this section were published at FSE 2017 [34].

2.4.2 Description of MANTIS

The Tweakable Block Cipher

MANTIS is a tweakable block cipher published at CRYPTO 2016 by Beierle et al. [8]. The
designers propose several variants MANTISr that differ only in the number of rounds. All
variants operate on a 64-bit message block M = M0‖M1‖ · · · ‖M15 and work with a 64-bit tweak
T = T0‖T1‖ · · · ‖T15 and (64 + 64)-bit key K = (k0, k1). All 64-bit values are mapped to 4× 4
states S of 4-bit cells Sj:

S =

S0 S1 S2 S3

S4 S5 S6 S7

S8 S9 S10S11

S12S13S14S15

.

The cipher’s structure is similar to PRINCE, with r forward rounds Ri and r backward rounds
R2r+1−i = R−1

i , separated by an involutive, unkeyed middle layer S◦M◦S. The 64-bit subkey k1

HECTOR D3.3 Page 24 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

is used as round key for the outer forward and backward rounds, while the other 64-bit subkey
k0 and the derived k′0 = (k0 ≫ 1) + (k0 � 63) serve as whitening keys. The tweak T is added
together with k1 in every round according to the TWEAKEY construction, with a simple cell
permutation h as a tweak schedule. The construction is illustrated in Figure 2.9.

M

T

C

k1

k1+α

k0

k′0

R1

R−1
1

h

R2

R−1
2

h

R3

R−1
3

h

R4

R−1
4

h

R5

R−1
5

h

S

M

S

Figure 2.9: PRINCE-like structure of MANTISr, illustrated for MANTIS5.

The Round Functions Ri and R−1
i

The round function Ri is very closely related to that of Midori [6]. It updates the 4× 4 state of
4-bit cells by means of the sequences of transformations

Ri = MixColumns ◦ PermuteCells ◦ AddTweakeyi ◦ AddConstanti ◦ SubCells,
R−1
i = SubCells ◦ AddConstanti ◦ AddTweakeyi ◦ PermuteCells−1 ◦MixColumns,

as illustrated in Figure 2.10. In the following, we briefly describe the individual operations. For
a more detailed description of the MANTIS family, we refer to the design paper [8].

Ri

S P M

Ci h
i(T) k1

R−1
i

SP−1M

Cihi(T)k1+α

Figure 2.10: The MANTIS round functions Ri and R−1
i .

SubCells (S). The involutive 4-bit S-box S given below is applied to each cell of the state.
For our attack, we are primarily interested in the differential behaviour of S, which is illustrated
below.

x 0 1 2 3 4 5 6 7 8 9 a b c d e f

S(x) c a d 3 e b f 7 8 9 1 5 0 2 4 6

AddTweakeyi (A) and AddConstanti (C). Several round-dependent values are added to
the state: The round constant Ci, the subkey k1 (for Ri) or k1 + α (for R−1

i), and the round
tweakey hi(T). The tweakey update function h simply permutes the order of cells using the
permutation h, specified in Figure 2.11a.

PermuteCells (P). The cells of the state are permuted by P, specified in Figure 2.11b.

HECTOR D3.3 Page 25 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

0 61 52 143 15
4 05 16 27 3
8 79 1210 1311 4
12 813 914 1015 11

h

(a) The tweak update function h.

0 01 112 63 13
4 105 16 127 7
8 59 1410 311 8
12 1513 414 915 2

P

(b) The state transformation P.

Figure 2.11: The MANTIS permutations h and P.

0
0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

a

a

b

b

c

c

d

d

e

e

f

f

∆
in

∆out
prob.

1
1
4

1
8

(a) DDT of SubCells.

0
0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

a

a

b

b

c

c

d

d

e

e

f

f

∆
in

∆out
prob.≈

1
15
16

3
4

1
16

1
256

(b) Truncated DDT of MixColumns.

Figure 2.12: Differential distribution tables (DDT) of the MANTIS round operations.

MixColumns (M). Each column of the state is multiplied with the following involutive near-
MDS matrix M over GF(24), whose truncated differential behaviour per column is illustrated
below:

M =

0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0

 .

2.4.3 Differential Characteristic

Bounds and Security Claim

The designers of MANTIS analyze the security of the cipher against differential cryptanalysis
by modelling the differential behaviour (truncated to state cells) as a mixed-integer linear
program [8]. They analyzed the minimum number of active S-boxes for different round numbers,
both in a fixed-tweak and a related-tweak setting. The design document provides lower bounds
for full and round-reduced MANTIS.
For MANTIS5, the minimum number of active S-boxes in the related-tweak setting is 34 (for the
full MANTIS7: 50), and the maximum differential probability of the S-box is 2−2. The designers
conclude that “no related tweak linear or differential distinguisher based on a characteristics is
possible for MANTIS5” [8]. In particular, they claim that MANTIS5 is secure against “practical
attacks”, here defined as related-tweak attacks with data complexity 2d at most 230 chosen
plaintexts (or 240 known plaintexts), and computational complexity at most 2126−d.

HECTOR D3.3 Page 26 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

M

T

C

243.26

Initialization

Finalization

k0

k′0

a
a

k1

k1+α

Round 1

Round 10

a

a

a
a

1

1
2

2
2

=

=
6

7

8
8

8

9
9

9

·2−15.51

S

S

a

a

h ◦ C
a

a
a

1

1
2

2
2

=

=
6

7

8
8

8

9
9

9

k1

k1+α

a
a
a

1
1

2
2
2

=
=

6
7

8
8
8

9
9
9

P

P

M

M

a

8

96
7

1
1

2

a
a

a
a

3

3

5

5

·2−7

·1

S

S

a
ah ◦ C

3

3

5

5

k1

k1+α

3
3

5
5

P

P

M

M

Round 2 · · ·

Round 9 · · ·

3
3

5
5

h ◦ C · · ·

3
3

5
5

· · · Round 3

· · · Round 8

a
a

a
a

·2−4

·2−2

S

S

a
a· · ·

a

a

a

a

k1

k1+α

a
a

a
a

P

P

M

M

a
a

a
a

Round 4

Round 7

a
a

a
a

a
a

a
a

·2−4

·2−4

S

S

a
ah ◦ C

k1

k1+α

Round 5

Round 6

a
a

h ◦ C

a
a

a
a

k1

k1+α

P-M-S

P-M-S

a

a

a

a

P

P

M

M

Inner

Inner

a

a

a

a

4

4

4

4

·2−2

·2−2

S

S

M

aa ∆ = a
1 2 3 ∆ ∈ {a, f}

4 5 6 7 ∆ ∈ {a, f, d, 5}
∆↔ ∆ + a

i ∆ identical
8 9 = Key recovery

Figure 2.13: Family of differential characteristics for MANTIS5.

A Family of Differential Characteristics

Our attack is based on a truncated differential characteristic for the related-tweak setting
that meets this lower bound of 34 active S-boxes. The truncated characteristic is illustrated
in Figure 2.13. Instead of considering only a single fixed input difference and differential
characteristic, we will cluster several related differential characteristics following the same
truncated differential characteristic, thus obtaining a much better probability.

An Optimal Differential Characteristic. To analyze the probability, we first construct a
differential characteristic that matches the claimed optimal differential probability of 2−34·2 =
2−68. Consider the differential distribution table of SubCells, given in Figure 2.12a. Observe that
SubCells is an involution, so the table is symmetric. There is one input/output difference, a, such
that all transitions from or to difference a have the maximum probability of 1

4
. Furthermore,

these possible transitions include a 7→ a. Since MixColumns only has binary coefficients, all
transitions that match the branch number of 4 for MixColumns (1→ 3, 2→ 2, 3→ 1) are valid
when all active cells have a fixed difference of a.
Since all non-trivial MixColumns transitions of the truncated differential characteristic in Fig-
ure 2.13 match its branch number, setting all active cells to a results in a valid differential
characteristic with the claimed optimal probability of 2−34·2 = 2−68.

HECTOR D3.3 Page 27 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

Clustering Differential Characteristics. We will now relax some of these constraints,
and also consider characteristics with cell differences other than a in selected sections of the
characteristic. Interesting candidates include all differences that can be mapped from and to a

by SubCells, that is, {5, a, d, f}.

Rounds 9 and 2. First, consider Round 9. The SubCells layer at the end of Round 8 has
2 active S-boxes, at positions S6 and S10. Assume we allow all possible output differences
{5, a, d, f} for the two S-boxes, marked 5 in Figure 2.13. Then, the characteristic will follow the
same truncated differential, with the same probability of 2−4·2 to transition to the all-a state at
the end of Round 9, as long as both S-boxes map to the same difference. The probability for
this is 2−2, instead of the original 2−4 of the all-a differential characteristic.
A similar observation applies for the two S-boxes S3 and S12 of Round 2, marked 3 in Figure 2.13.
However, as we want to relax also the input differences to Round 2, we will consider only output
differences {a, f}. These have the additional advantage of allowing transitions with probability
2−2 not only to a, but each to both a and f, so this relaxation can be used in multiple consecutive
rounds. The probability for Round 2 improves from 2−8 to 2−2·2 · 2−1 · 2−2 = 2−7.

Inner Part. Second, consider the inner part. Similar as for Round 9, we can allow all 4 output
differences for the first SubCells operation of the inner part, as long as both S-boxes map to the
same difference, marked 4 in Figure 2.13. This seems to improve the probability for the inner
part from 2−4 · 2−4 to 2−2 · 2−4. However, note that there is no tweakey addition between the
two SubCells layers of the inner part, so the probabilities for the S-box transitions are certainly
not independent. Since there is also no PermuteCells operation, we can simply compute the
exact Superbox transition probability for the entire second column of the state. This reveals
that the probability for the inner part is in fact 2−4.

Initialization and Round 1. Like Round 2, we relax some of the differences of Round 1 to
{a, f}. The estimated probability for Round 2 will remain valid for the output cells of Round 1
(1 , 2 , a). Again, MixColumns adds several constraints for the output differences of the SubCells
layer of Round 1.
Finally, we relax the input differences. In addition to {a, f}, we also allow {5, d} in order to
generate more message pairs, while retaining a reasonable differential probability. For message
cells S10 and S14, marked in Figure 2.13, we need to compensate the AddTweakey operation
of the initialization part by considering input differences ∆ such that ∆ + a ∈ {a, f, 5, d}, or
equivalently, ∆ ∈ {0, 5, f, 7}. The probability for the SubCells layer of Round 1, assuming
uniformly distributed input differences, is then

2−3·2︸︷︷︸
→a
→a
→a

·
(

1

4
· 2−3 +

3

4
· 2−4

)
︸ ︷︷ ︸

, →1 ,1

·
(

1

8
· 2−5 +

7

8
· 2−6

)
︸ ︷︷ ︸

, , →2 ,2 ,2

≈ 2−15.51.

Consequently, the overall probability of the family of characteristics up to Round 9 (or more
precisely, up to AddTweakey of Round 10) is at least about

2−15.51−7−4−4−2−2−4−2 = 2−40.51.

Round 10. If a pair followed the family of characteristics up to Round 9, the output of the
AddTweakey operation of Round 10 will have several properties that can be used as a filter for
key recovery:

HECTOR D3.3 Page 28 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

Set 1

Set 2

0

0

5

5

a

a

f

f

d

d

8

8

7

7

2

2

(a) Differences {a, f, d, 5} ().

Set 1

Set 2

0

0

5

5

a

a

f

f

d

d

8

8

7

7

2

2

(b) Differences {0, 5, 7, f} ().

Figure 2.14: Initial structure with 8 · 4 pairs from 2 · 8 queries per cell.

• Cells S1, S4, S11, S13, S15 have zero difference, which will also be immediately visible in the
ciphertexts (though not useful for key recovery).

• Cell S14 (marked a) has difference a (2-bit filter).

• Cells S0, S5, S10 (marked 8) will have the same difference (8-bit filter), as will cells S2, S7, S8

(marked 9) after compensating for the tweak difference (8-bit filter).

• Cells S6 and S12 (marked 6 , 7) will have differences {a, f, 5, d}, and additionally, due to
the properties of MixColumns, cells S3 and S9 (marked =) will have the same difference,
which is the sum of the differences of S6, S12 (12-bit filter).

Overall, the family of characteristics provides a 30-bit filter with probability 2−40.51.

Initial Structure

We now want to generate enough message pairs to expect at least one valid pair, while staying
well below the data complexity limit of 230 chosen plaintexts. Obviously, the characteristic’s
probability is not good enough for a straightforward solution with 229 suitable pairs. However,
we can use the set {a, f, d, 5} of valid differences for each cell to our advantage.
We repeat the following for two random base plaintext-tweak pairs. For each of the two plaintext-
tweak pairs, we query two sets of derived plaintext-tweak pairs: one for the base tweak, and
one for the modified tweak with a difference of a in two cells, as specified by the truncated
differential characteristic in Figure 2.13. The first set for the base tweak contains the following
88 modified messages. Each of the 8 active cells (,) varies over 8 values: the base plaintext
plus differences {0, a, f, 5, d, 8, 7, 2}. The second set for the modified tweak contains the same
88 messages. In total, the number of chosen plaintext-tweak pairs we query is

2 · 2 · 88 = 226.

Thus, we could repeat this up to 24 = 16 times and still stay below the data complexity limit.
To see how many suitable pairs we can generate from these queries, note that for each value of a
cell in the first set, there are exactly 4 (out of 8) values for this cell in the second set that give a
valid difference {a, f, d, 5} () or {0, 5, 7, f} (), as illustrated in Figure 2.14. Here, we exploited
that a + 5 = f, where all these three values are suitable for our family of characteristics. Thus,
the number of pairs we get is

2 · 88 · 48 = 241,

and the expected number of valid pairs is at least

241 · 2−40.51 = 20.49 ≈ 1.40 .

By repeating this up to 24 times, we can increase the expected number of valid pairs up to
24.49 ≈ 22.47. We evaluated the initial structure practically for 1024 random keys, and found
that the average number of valid pairs is significantly higher than the estimated 22.47, around
26.28 ≈ 78.

HECTOR D3.3 Page 29 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

2.4.4 Key Recovery

We can now use the family of characteristics and initial structure from subsection 2.4.3 to recover
the two 64-bit secret keys k0 and k1. In the following, we will use 4 repetitions r = 1, . . . , 4 of
the initial structure. Thus, we need to query 4 · 226 = 228 chosen plaintexts with chosen tweaks
in order to generate the 4 · 241 = 243 plaintext pairs. This is well below the complexity limit of
230 chosen plaintexts for MANTIS5.

Pre-Filtering Ciphertexts for Wrong Pairs

Before starting with the key guessing, we can filter for pairs which definitely do not follow the
family of characteristics given in Figure 2.13. The necessary conditions for valid ciphertext pairs
are that 5 cells (S1, S4, S11, S13, S15) have a zero difference (marked), while the difference in
cell S14 is {a, f, d, 5} after removing the last tweak addition (marked). The reason for the
restriction of the differences in cell S14 lies in the tweak addition in this cell before the last
S-box application.
If we assume that plaintext pairs which do not follow our family of characteristics produce a
randomly distributed difference pattern for corresponding ciphertext pairs, these conditions
are fulfilled with a probability of 2−22. Hence, we reduce the set of 241 pairs per repetition r
from the initial structure to a set Ir of about 241−22 = 219 pairs. Each set Ir is still expected to
contain 20.49 > 1 valid pairs that follow the family of characteristics of Figure 2.13.

Complexity and Optimizations. A naive implementation of generating and pre-filtering
pairs costs 4 · 241 state xor operations. However, instead of enumerating all valid pairs and then
filtering for matches on 5 cells, it is much more efficient to reverse the process and only generate
the relevant pairs as follows. Store each plaintext-tweak-ciphertext of Set 1 in a data structure
of 220 partitions, partitioned according to the value of the 5 pre-filter cells S1, S4, S11, S13, S15.
The expected size of each partition is about 25. Then, for each plaintext-tweak-ciphertext
of Set 2, iterate only over the 25 candidates in the correct partition, and check whether the
input difference is valid and the difference of output cell S14 is valid. The set Ir of remaining
filtered pairs is the same, but the computational complexity is reduced to less than 230 state xor
operations.

Recovery of 44-bit k′0 + k1

The first step of the attack is the partial recovery of 44 bits of the final whitening key k′0 +k1. We
want to check our key guesses against the differential pattern we get before the last application
of MixColumns in Round 10 for our filtered ciphertext pairs. The probability that a 44-bit key
guess leads to this pattern before the application of MixColumns is 2−30:

• Column 1: Here, only cell S12 has a difference at the input of MixColumns, while the
others have none. The requirements that lead to this pattern are that a key guess on
the ciphertext cells S0, S5, S10 (8) leads to an equal difference after an S-box application,
which happens with a probability of 2−8 per ciphertext pair and key guess.

• Column 2: This column is inactive. The only condition we have to fulfill here is that the
difference introduced in cell S14 () of the ciphertext is canceled by the tweak addition
that happens before the S-box application of the last round (right after the last application
of PermuteCells). Since our filtering ensures that only ciphertext pairs with differences

HECTOR D3.3 Page 30 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

{a, f, d, 5} in cell S14 () after the last SubCells are considered, this happens with a
probability of 2−2.

• Column 3: For this column, cells S2 (6) and S6 (7) must have a difference {a, f, d, 5},
while cells S10, S14 have zero difference (). The necessary conditions for this to happen are
that a key guess on cells S3, S6, S9, S12 of the ciphertext pair leads to an input difference
{a, f, d, 5} on cells S6, S12 (6 , 7) before the last SubCells (2−2 per cell), and that the
differences in S3, S9 (=) each equal the difference between S6 and S12 (2−4 per cell). The
overall probability for this is 2−12 per ciphertext pair and key guess.

• Column 4: For this column, the same reasoning as for column 1 applies, now for ciphertext
and key cells S2, S7, S8 (9) after compensating for the last tweak addition. Again, the
probability is 2−8.

If we now decrypt one ciphertext pair i ∈ Ir backwards for one SubCells layer under 211·4 = 244

key guesses, 244−30 = 214 key guesses remain which satisfy all these conditions for this ciphertext
pair i. We expect the correct key guess to satisfy the conditions for at least one of the ciphertext
pairs i ∈ Ir, which follows the family of characteristics in Figure 2.13. Thus, we repeat the
procedure for all 219 pairs and consider the union of all resulting potential key candidates. We
expect at most 214 · 219 = 233 candidates for the right key guess, which effectively reduces our
keyspace by 2−11. So, repeating the attack a total of 4 times with fresh initial structures is
sufficient to recover the correct value of 44 bits of k′0 + k1.

Complexity and Optimizations. To get the possible key candidates per ciphertext pair,
we need 2 · (216 · 4 + 2 · 212 · 3 + 24) ≈ 219.13 S-box look-ups, which corresponds roughly to 211.54

MANTIS5 encryptions (based on the total number of 16 · 12 S-boxes in MANTIS5). In total,
we have to generate key candidates for 4 · 219 pairs, corresponding to a total of about 232.54

MANTIS5 encryptions.
In a straightforward implementation, we get 4 lists, each containing 233 key candidates, which
dominates our memory requirements. We need to find matches between the 4 lists, which adds
a computational complexity of roughly 233 operations, depending on the implementation.
Note that it is not actually necessary to guess all 44 bit of the subkey at once per ciphertext pair
i ∈ Ir. Instead, we can split up the key guesses column-wise into a 12-bit subkey for column 1
(with a set of valid subkey candidates of expected size |C(r,i)

0,5,10| = 24), a 4-bit subkey for column

2 (|C(r,i)
14 | = 22), a 16-bit subkey for column 3 (|C(r,i)

3,6,9,12| = 24), and a 12-bit subkey for column 4

(|C(r,i)
2,7,8| = 24). The expected set of 214 full key candidates per pair i is then the product set of

these sub-candidates. We refer to this structured set of key candidates from repetition r and
pair i ∈ Ir as a bundle B(r,i), where

B(r,i) = C(r,i)
0,5,10 × C(r,i)

14 × C(r,i)
3,6,9,12 × C(r,i)

2,7,8.

Storing all bundles requires only about 4 · 219 · 10.25 < 225 MANTIS states. To find the correct
value of all 44 bits, we now need to compute

4⋂
r=1

⋃
i∈Ir
|Ir|≈219

C(r,i)
0,5,10 × C(r,i)

14 × C(r,i)
3,6,9,12 × C(r,i)

2,7,8.

The computational complexity of matching the bundles of key candidates is similar to before if
the list of bundles per repetition is indexed efficiently per subkey candidate. Then, the bundles
can be intersected subkey by subkey, starting with the most restrictive subkey, C(r,i)

3,6,9,12.

HECTOR D3.3 Page 31 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

Recovery of 32-bit k0 + k1

With the help of the recovered 44 bits of k′0 + k1, we can filter our plaintext pairs i ∈ Ir so that
only the valid plaintext pairs following the family of characteristics in Figure 2.13 remain. The
probability that the right key identifies a wrong pair as correct one is 2−30. Therefore, it is likely
that only correct pairs (approximately 4) remain after filtering 4 · 219 pairs. We now use those
4 valid pairs to recover 32 bits of the initial whitening key k0 + k1. We guess the key bits for
all plaintext cells with differences, S0, S5, S6, S7, S8, S10, S12, S14. Then we can compute forward
through the SubCells layer of Round 1, and check if the resulting difference pattern matches
the family of characteristics. As shown in Figure 2.13, a wrong key matches the pattern with a
probability of 2−15.51. So, the probability that a wrong key matches for all 4 correct pairs is
2−62.04. Therefore, we expect that only the correct subkey out of the 232 possible candidates
remains.

Complexity. We make a 32-bit key guess for each of 4 pairs, leading to a total of 2·4·8·232 = 238

S-box look-ups. This corresponds to about 230.42 MANTIS5 encryptions.

Recovery of k0 and k1

Up to this point, we have recovered 32 bits of information about k0 +k1 and 44 bits of information
about k′0 + k1 = (k0 ≫ 1) + (k0 � 63) + k1. This gives us a system of 76 linearly independent
linear equations for k0 and k1. To recover the full key, we have to guess 52 remaining bits and
identify the right key using trial encryptions.
Instead of guessing all 52 bits, we can also use the SubCells layers of Rounds 2 and 3 (or 9 and
8) to first recover more bits of k1, based on the previously recovered information. Similar to
recovering k0 + k1, we can apply a guess-and-determine approach to only the 4 valid pairs, for
example:

(1) Recover S0 + S5 + S10 of k1: We target cell S12 at the beginning of Round 2 (transition
2 → 3 in Figure 2.13). From our previously recovered key bits, we know the values of cells
S0, S5, S10 at the beginning of Round 1 (2). Our target cell is the sum of these known
values, plus an unknown cell S0 + S5 + S10 of k1. Checking the correct S-box transition for
all 4 valid pairs is expected to eliminate all but the correct cell value (otherwise, we can
additionally check the transition 8 ← 5 in Round 9). This adds 1 linearly independent
equation to the system.

(2) Recover S6 + S12 of k1: We target cells S2, S6 at the beginning of Round 2 (transitions
1 → a). Each of the two is the sum of the same two unknown, constant values (cell S3 and
cell S9 after AddTweakey of Round 1), a known, variable value, and a cell of k1 (S6 or S12,
respectively). By checking the S-box transitions and then eliminating the two unknown
constants, we recover the cell sum S6 +S12 of k1. This adds 1 linearly independent equation
to the system.

(3) Recover S2 + S7 + S8 of k1: We target cell S3 at the end of Round 9 (transition 9 ← 5).
Similar to (1), the transition depends on a sum of k1 cells, S2 + S7 + S8. From (1), we
can derive the exact target difference in 5 , so the transition probability is at most 2−2,
and we expect only the one correct cell value to remain. This adds 4 linearly independent
equations to the system.

(4) Guess 1 bit: If we guess only 1 bit of k0 now (e.g., in cell S12), this will fully determine
the values of cells S2, S5, S6, S7, S8, S12 of k0 and k1.

HECTOR D3.3 Page 32 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

(5) Recover S3 of k1: We target cells S6 and S10 at the beginning of Round 3 (transitions
3 → a). Due to the previous MixColumns operation, the internal difference between cells
S6 and S10 is equal to the internal difference between cells S3 and S12 after the previous
AddTweakey operation, which is known except for the addition of key cell S3 of k1. On the
other hand, since we require that both target cells belong to the same set of 4 possible
values for a valid transition, this cuts down the possible values for S3 of k1 to less than
half. After repeating for all 4 valid pairs and, if necessary, similarly for the transition
5 ← a in Round 8, we expect only the correct candidate to remain. This adds 4 linearly
independent equations to the system.

(6) Recover S9 of k1: We target cells S2 and S6 at the end of Round 9 (transitions 6 → a and
7 → a). The transition depends on the values of cells S3, S6, S9, S12 before AddTweakey
of Round 10, which are all known by now except for the addition of key cell S9 of k1.
Determining S9 adds another 4 linearly independent equations to the system.

Complexity. The guess-and-determine approach recovers 14 of the missing bits of the original
64-bit keys k0 and k1. This reduces the remaining bits that need to be guessed to 38. To complete
the key, we have to compute 238 trial encryptions, which dominates our attack complexity.

Practical Verification

We implemented the key recovery attack in C/C++ in order to verify the probability estimates
and attack complexity. A first straightforward implementation revealed some additional struc-
tural properties of MANTIS that negatively affect the success probability of the attack. For this
reason, we adapted some aspects of the attack in order to obtain a good success probability in
practice.
The first issue is that while the estimated number of about 1 to 10 valid pairs per repetition
appears to be a reasonable estimate on average, the variance is relatively high. We observed
several repetitions with no valid pairs, while other repetitions produced a dozen or more pairs.
This is a problem for the 44-bit key recovery of section 2.4.4, which relies on finding at least
1 valid pair per repetition. There are several options to compensate for this. If memory
requirements and higher runtime are not an issue, we can simply expand all bundles of key
candidates and count the number of occurrences of each candidate, which will reveal the correct
candidate with very high probability. A more practical alternative is to change the initial
structures per repetition to contain more structures for different plaintexts, but with fewer
queries per structure, in order to decrease the variance. For example, if we use 26 base plaintexts
per repetition, but vary only 7 instead of 8 cells, the resulting expected number of pairs per
repetition remains the same at 26 · 87 · 47 = 241, but the data complexity increases slightly to
2 · 26 · 87 = 228, or 4 · 228 = 230 in total for all repetitions.
The second issue is that during the 32-bit key recovery of section 2.4.4, we always find at least
28 possible key candidates instead of just 1, and 2 key candidates for the 44-bit subkey. Both
this and the previous issue are caused by the same structural property of the MANTIS S-box.
We filter our keys by checking whether the valid pairs follow the correct differential S-box
transitions in Round 1, that is, {a, f, d, 5} 7→ {a, f} for each cell. However, it turns out that
whenever a pair of cells (x, x′) follows one of these transitions, then so does (x+ a, x′ + a). This
means that for each cell k of the correct subkey, there is an equivalent value k + a which also
satisfies all the constraints of Round 1, leading to a total of at least 28 candidates. This would
also increase the complexity of section 2.4.4 accordingly. Instead of the expensive brute-force

HECTOR D3.3 Page 33 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

approach of section 2.4.4, we encoded the recovery of the remaining key information as a Boolean
satisfiability (SAT) problem.
The final adapted attack successfully recovered the full key for several tested random challenges.
A sample test run takes about 16 minutes to query 230 plaintexts and generate the pre-filtered
list of about 4× 221 pairs (section 2.4.4). Creating the bundles of key guesses takes 22 minutes
and produces about 4× 214.6 bundles in total, corresponding to about 232 key candidates per
repetition if fully enumerated (section 2.4.4). Intersecting these lists takes 18 minutes and
produces more key candidates than expected, about 27. However, counting the frequency of
each of these candidates across repetitions clearly identifies the correct 44-bit final whitening
subkey (except for 1 bit, due to differentially equivalent keys as discussed above, which can be
filtered by the SAT solver). In the sample test run, this correct key identified 14 valid pairs,
slightly less than the observed average of roughly 25 pairs. The high number of valid pairs means
that it is relatively unlikely that one repetition contains no valid pairs, and that these cases
could also usually be easily fixed by reshuffling the random plaintexts between repetitions. We
also observed no false positives among the valid pairs, except for several cases with differences
{d, 5} in S0, S5, S6, S10, S12 after the SubCells layer of Round 1 (1 , 2). We included these cases
in the family of target characteristics. For the initial whitening subkey recovery (section 2.4.4),
as discussed above, the recovered information is only about 32 − 9 bits due to differentially
equivalent subkeys, and takes about 3 minutes. Finally, the SAT solver takes another 1.5 minutes
to successfully recover the rest of the key (section 2.4.4). Overall, the full correct key is recovered
in about 1 hour on a single core, and the process is trivially parallelizable.

2.4.5 Discussion

We recover the full 128-bit key for MANTIS5 with a complexity of 238 encryptions, memory
requirements of 225 MANTIS states, and a data complexity of 228 chosen plaintexts with chosen
tweaks. A practical implementation recovered the correct key in an hour based on 230 chosen
plaintexts. This violates the security claim for MANTIS5.
We did not analyze the full-round MANTIS7 proposal. Many of the observations and methods for
MANTIS5 also apply to MANTIS7: It is relatively easy to find a very similar optimal differential
characteristic with probability 2−100 (compared to 2−68 for MANTIS5), and to apply the same
observations for clustering characteristics. However, a straightforward adaptation of the full
key recovery attack is made more difficult by several factors. For example, it is hard to find
characteristics for MANTIS7 which on the one hand have a sufficiently low number of active
S-boxes, and on the other hand have enough active cells at the input and output to be useful
for key recovery. Also, due to the small state size, the probability must be relatively high to
avoid false positives among the valid pairs.
Our attack takes advantage of several lightweight building blocks of MANTIS, mostly inherited
from the Midori block cipher. This includes the involutive S-box with its high-probability
differential fixed points a and f, the lightweight near-MDS matrix with its binary coefficients,
and the lightweight tweakey schedule. Throughout the analysis, the symmetries of the PRINCE-
like design facilitate the repeated exploitation of these properties. Another major issue is
the interaction of the Midori round function with PRINCE-like inner rounds, which leads to a
Superbox structure over 4 S-box layers in the inner rounds. Considering all these properties,
the security margin of MANTIS may be too optimistic.

HECTOR D3.3 Page 34 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

2.5 Known-Key Differential Attack on Simpira v1

2.5.1 Introduction

Known Keys and Permutations

Permutations represent another popular trend in the design of AEAD schemes. Whereas TBCs
provide a distinctly assigned input for each piece of information (tweak for positional metadata,
key as secret, and plaintext for the actual data block), permutation-based designs simply operate
on one large, secret state that successively accumulates data, secrets, and (implicit and explicit)
positional metadata. While their approaches are more or less orthogonal, their goals are similar:
Both TBC-based and permutation-based designs claim to provide cleaner, more efficient modes
of operation than classic block cipher modes.
The burden is, however, shifted to the design of the underlying primitive. Designing a permu-
tation, which simply maps a large input state to an output state of the same size, is a very
challenging task: The permutation must be both efficient and “secure”. The latter is hard to
specify as well as hard to achieve due to the lack of a clearly assigned secret key input as a “root
of security”.
There have been several efforts to build permutations from well-analyzed, well-understood block
ciphers, in particular AES. These efforts hope to profit from the vast body of literature on
performance optimizations, implementations, and cryptanalytic insights for the original block
cipher. In place of the round keys, other, possibly known values are added in each round, such
as round constants or other input-dependent values from other branches of a Feistel network.
In this section, we investigate the latter case of an unkeyed Feistel network based on the AES
round function. The designers invoke well-known results and techniques from the analysis of
AES-like block ciphers to argue the security against differential cryptanalysis. However, we show
that the lack of independent, unknown round keys invalidates this analysis at several stages,
including the number of active S-boxes, the maximum differential probability, the complexity
per solution, and the necessary security margin in the number of rounds.

Application to Simpira v1

The AES and its underlying wide-trail design strategy are among the most popular building
blocks for new symmetric designs. There are several good reasons for this. New AES-like designs
profit both from the insights in efficient implementations and from the extensive cryptanalysis
and well-understood security bounds of AES. In particular, if new designs not only reuse the
general design ideas, but the AES block cipher itself or its round function, then Intel’s AES-NI
instruction set can provide high software performance on modern CPUs. However, while block
ciphers are a versatile building block for other cryptographic primitives, the fixed block size
of AES of 128 bits implies a certain limitation. Modern designs often require larger states
for efficiency or security. Examples include permutation-based cryptography (hash functions,
authenticated encryption, etc.), wide-block encryption, security beyond 264 inputs without
resorting to beyond-birthday-security schemes, and more.
These considerations have motivated the design of numerous cryptographic algorithms based
on the AES round function. Notable recent examples of dedicated designs include several
authenticated encryption algorithms with excellent software performance, such as the CAESAR
round-2 candidates AEGIS [114] and Tiaoxin [93], but also more specialized primitives like the
Haraka hash function for short inputs [71]. Very recently, Jean and Nikolić [59] analyzed a
more general family of AES-round-based building blocks that generalizes several of the previous

HECTOR D3.3 Page 35 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

dedicated designs. However, except for the last work, these dedicated designs target only specific
state sizes, and do not offer scalable, easily reusable building blocks for other cryptographic
applications.
Simpira is a recently proposed family of permutations designed by Gueron and Mouha [52] that
aims to fill this gap. The design goal is to provide very efficient permutations for arbitrarily
large input sizes of b · 128 bits, b ∈ N+, while taking advantage of the Intel AES-NI instruction
set for optimized software implementations. To achieve these goals, Simpira plugs the AES
round function into a generalized Feistel construction. Additionally, the designers provide
computer-aided bounds for the minimum number of active S-boxes, and argue that these
bounds provide security against a wide range of attack vectors. To showcase the versatility of
the Simpira permutations, the designers propose a number of application scenarios, including
Even-Mansour block cipher constructions, or a keyless Davies-Meyer variant for hash functions
with limited-length inputs.

Our contribution. We analyze members of the original Simpira v1 family [52]. We show
that the underlying assumptions of independence, and thus the derived bounds on the minimum
number of active S-boxes, are incorrect. We focus our analysis on family member Simpira-4
with its 512-bit state, but similar observations also apply to other family members with larger
state sizes. For Simpira-4, we provide differential trails with only 40 (instead of 75) active
S-boxes for the recommended 15 rounds. Based on these trails, we propose collision attacks
on the proposed Simpira-4 Davies-Meyer hash construction. For 16 rounds of the permutation,
we obtain collisions for the full 512-bit hash output with complexity 2110.16. We also adapted
the attack to the originally recommended 15 rounds, but omit the details in this report. These
attacks violate the designers’ security claims that there are no structural distinguishers below
2128.

Related work. Rønjom [101] independently analyzed Simpira v1, and identified invariant
subspaces for any even number of rounds of Simpira-4. Both attacks on Simpira v1 exploit
properties of the underlying Type-1.x Generalized Feistel Structure by Yanagihara and Iwata [115]
and the sparse, structured round constants. In response to Rønjom’s and our attacks, Gueron
and Mouha proposed a new version of the design, Simpira v2 [53], published at ASIACRYPT
2016. Simpira v2 replaces both the Feistel construction and the round constant schedule. In the
remaining document, Simpira always refers to Simpira v1.
Simpira is not the first AES-round-based design with problematic round constants. Other
examples include the analysis of the hash function Haraka [71] by Jean [58], the analysis of the
withdrawn CAESAR round-1 candidate PAES [116] by Jean et al. [61, 62], or the analysis of
SHAvite-3 [11] by Peyrin [96]. In all three cases, the structure of the round constants failed to
break the symmetry properties of the unkeyed AES round function. However, our attack exploits
different properties, in particular the incomplete diffusion of differences in the structured round
constants. The results discussed below were published at SAC 2016 [35].

2.5.2 Description of Simpira

Simpira is a family of permutations designed by Gueron and Mouha [52]. By using the AES
round function in a generalized Feistel construction, it can be adapted to any input size of b · 128
bits, b ∈ N+. We refer to Simpira family members as Simpira-b.

HECTOR D3.3 Page 36 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

F -Function

The Feistel update function F = Fc,b applies two rounds of AES, where the Simpira family
member b and the round counter c define the round constants. Like for AES, the 128-bit
intermediate state of F is represented as a 4× 4-matrix of bytes, labelled s0, . . . , s15:

S =

s0

s1

s2

s3

s4

s5

s6

s7

s8

s9

s10

s11

s12

s13

s14

s15

.

We also refer to the value at byte position si in state S as S[i].
The operations SubBytes, ShiftRows, and MixColumns are defined identically to AES, whereas
AddConstant adds counters that define an invocation counter and the value b:

• SubBytes (SB): Applies the 8-bit AES S-box S to each of the 16 state bytes.

• ShiftRows (SR): Rotates row i of the state, 0 ≤ i ≤ 3, by i bytes to the left.

• MixColumns (MC): Multiplies each byte column of the state by the MDS-matrix M over
K = F2[α]/(α8 + α4 + α3 + α + 1),

M =

α α + 1 1 1
1 α α + 1 1
1 1 α α + 1

α + 1 1 1 α

 =

02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02

• AddConstant (AC): In the c-th invocation of F for Simpira-b, xors the following round

constant Cc,b to the state:

Cc,b =

c0 b0 0 0
c1 b1 0 0
c2 b2 0 0
c3 b3 0 0

.

In the remaining section, we focus on Simpira-4, so b0 = 04 and b1 = b2 = b3 = 00. Also,
since the number of invocations of F is limited to 30 in Simpira-4, c1 = c2 = c3 = 00. This
constant is only added in the first of the two AES rounds of F , while the second round
adds 0.

To refer to intermediate states of F for an input S, we use the following notation:

S
SB7−→ SSB1 SR7−→ SSR1 MC7−−→ SMC1 AC7−→ SAC SB7−→ SSB2 SR7−→ SSR2 MC7−−→ SMC2 = F (S) .

Round Function and Permutation

The permutation Simpira-b keeps a state of b · 128 bits. The generalized Feistel round function
for b ≥ 4, where b 6= 6, 8, is illustrated in Figure 2.15. The final output of Simpira-b for b ≥ 4,
b 6= 6, 8, is the state after 6b−9 such rounds. Note that if the number of rounds is not a multiple
of b, the state words are output in a permuted order to allow for more efficient implementations.

HECTOR D3.3 Page 37 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

F2i−1,b F2i,b · · ·⊕ ⊕

Figure 2.15: Round function for round i of Simpira-b for b ≥ 4, b 6= 6, 8.

In case of Simpira-4, we denote the 4 state words before round i ≥ 1 by SAi , S
B
i , S

C
i , S

D
i , so the

state update rule corresponds to

SAi+1 = F2i−1,4(SAi)⊕ SBi ,
SBi+1 = F2i,4(SDi)⊕ SCi ,
SCi+1 = SDi ,

SDi+1 = SAi .

The recommended number of rounds for Simpira-4 is 15, with output words (SB16, S
C
16, S

D
16, S

A
16).

Permutation-based Hashing

Simpira’s designers identify several application areas for the Simpira permutation, such as block
ciphers via an Even-Mansour construction. One particular suggested application is permutation-
based hashing for short inputs, where “short” means the state size of any Simpira variant. The
proposal is to use a single-block, keyless Davies-Meyer-like construction with a feed-forward,
and compute the hash h(x) of x as

h(x) = Simpira-b(x)⊕ x.

This approach provides an efficient construction for hashing inputs of limited length, which is
required by many applications, such as Lamport signatures [72].

2.5.3 Collision Attacks on Simpira-4 Hash

In this section, we show that the number of rounds recommended by the designers is not sufficient
to obtain a secure permutation. In particular, we provide collisions for full-round Simpira-4
when used in the hash mode suggested by the designers. While our analysis is focused primarily
on Simpira-4, the basic observations also apply to the larger Simpira variants with the same
construction approach, that is, Simpira-b with b ≥ 4, b 6= 6, 8.

Differential Trail with 40 Active S-Boxes over 15 Rounds

The analysis performed by Simpira’s designers [52] relies on two basic bounds: full bit diffusion,
and minimum number of active S-boxes. The recommended number of rounds for each variant
is selected as 3 times the number of rounds necessary to prove full bit diffusion and a minimum
number of 25 differentially or linearly active S-boxes. While the proofs for full bit diffusion
are based on generic results on the underlying generalized Feistel construction by Yanagihara
and Iwata [115], the bounds for active S-boxes were obtained with a Mixed-Integer Linear
Programming (MILP) model [89]. For Simpira-4, both full bit diffusion and at least 25 active
S-boxes are claimed to be provided by 5 rounds of the round function. For the full number of 15
rounds, this method would imply at least 75 active S-boxes.

HECTOR D3.3 Page 38 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

The bound is derived under the assumption that all F -function inputs are processed independently.
For example, if the F -functions were indeed independent, the 4-round differential trail illustrated
in Figure 2.16 would contain 20 independently active S-boxes. Since the trail is iterative, and
adds 5 active S-boxes per round, this trail also demonstrates the tightness of the 15-round
bound.
Of course, in an unkeyed primitive like a permutation or a hash function, the S-boxes are not
really independent, since there are no random, independent round keys. Nevertheless, it is
usually a reasonable assumption that the differential probabilities behave as if the values were
actually independently random. We thus count S-boxes as independently active when it can
reasonably be expected that their multiplied differential probabilities give a good estimate for
the overall differential probability of the trail.

R
1

SB
SR
MC

AC
SB
SR
MC

SB
SR
MC

AC
SB
SR
MC

SA1 SB1 SC1 SD1

R
3

SB
SR
MC

AC
SB
SR
MC

SB
SR
MC

AC
SB
SR
MC

SA3 SB3 SC3 SD3

R
2

SB
SR
MC

AC
SB
SR
MC

SB
SR
MC

AC
SB
SR
MC

SA2 SB2 SC2 SD2

R
4

SB
SR
MC

AC
SB
SR
MC

SB
SR
MC

AC
SB
SR
MC

SA4 SB4 SC4 SD4

SA5 SB5 SC5 SD5

Figure 2.16: Iterative 4-round trail for Simpira-4 with 10 independently active S-boxes.

However, for all instances of Simpira-b with b ≥ 4, b 6= 6, 8, this independence is violated by
the generalized Feistel construction, and the particular definition of F . Consider, for example,
the inputs to the active F -functions in rounds 1 and 2, SA1 and SD2 . The input values to the
two F -functions are identical. Recall the definition of F = Fc,b, in our case F1,4 and F3,4. The
only difference between F1,4 and F3,4 is the round-constant addition at the end of the first AES
round. This means that the inputs and outputs of the S-boxes of the first AES round must be
identical, i.e., SA,MC1

1 = SD,MC1
2 . The round constant only differs in state byte s0, so this means

the S-box transitions in the second AES round will also be identical except in s0. In fact, the
outputs SA,MC2

1 of F1,4 an SD,MC2
2 of F3,4 will have identical values except for the first column.

Considering the 4-round trail of Figure 2.16, this means that the entire output difference of F3,4

will be identical to that of F1,4 with probability 1, as illustrated in Figure 2.17. Note that s0 is
not active in the second AES round, and the differential behaviour of MixColumns is independent
of the actual values of s0. Consequently, if we fix all full-state differences to the same bitwise
difference pattern, all single-byte differences to the same difference pattern, and all columnwise
differences to the same difference pattern, the actual cost of the iterative trail of Figure 2.16 is
equivalent to only 5 active S-boxes per 2 rounds, or 40 S-boxes overall for the recommended 15
rounds, which is about half as many as suggested by the MILP-based bound. In fact, the MILP
model can be adapted to take this into account by counting only the activity of the left-hand
F -functions, and only S-box s0 for the right-hand F -functions, except in the first round. With

HECTOR D3.3 Page 39 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

this modification, it is easy to prove that 40 active S-boxes is a tight bound for 25 rounds. The
minimum number of rounds to achieve at least 25 active S-boxes is then 9, instead of 5.

SB SR MC AC
c

SB
c

SR
c

MC
c
c
c
c

Figure 2.17: Trail for the F -function with 5 active S-boxes.

Collision Attack on 8 Rounds

We now want to use this iterative differential trail of Figure 2.16 to find collisions for the
permutation-based hash construction suggested for Simpira permutations. Recall that in this
short-input Davies-Meyer construction, the b · 128-bit message is used as input to the Simpira
permutation, and finally added as a feed-forward to the permutation output to produce the
untruncated b · 128-bit hash value. Our trail is incidentally very well suited to produce collisions
for this feed-forward construction. Observe that if we fix all state differences to the same
patterns as discussed in section 2.5.3, the feed-forward will cancel out the message difference
with probability 1 for any number of rounds that is a multiple of b = 4.
To optimize the complexity of the collision attack, we need to fix the bitwise difference patterns
suitably. Recall that the AES S-box has maximum differential probability 4

256
= 2−6. For each

nonzero input difference, there is exactly one output difference with this probability (and vice
versa), while the other probabilities are either 2

256
= 2−7 or 0. We can easily choose difference

patterns so that all S-box transitions have this optimal probability, at least for uniformly random
round constants. For example, if we fix the one-byte input difference to 75, the trail illustrated
in Figure 2.18 satisfies our requirements. The probability of the differential for the F -function
is then at least 2−30. Overall, the probability of such an 8-round trail is at least 2−30·4 = 2−120,
and the resulting complexity for finding the 512-bit collision is at most 2120.

00 00 00 75

00 00 00 00

00 00 00 00

00 00 00 00

 SB7−−→

00 00 00 fe

00 00 00 00

00 00 00 00

00 00 00 00

SR
MC
AC7−−→

00 00 00 e7

00 00 00 fe

00 00 00 fe

00 00 00 19

 SB7−−→

00 00 00 f7

00 00 00 d8

00 00 00 d8

00 00 00 b7

 SR
MC7−−→

b7 d8 73 f5

b7 73 ab f7

c2 ab d8 f7

75 d8 d8 02

2−6 2−6·4

Figure 2.18: Trail for the F -function with probability 2−30

Note that we are actually not interested in the probability of the trail within the F -function,
but just in the input-output differential from the fixed 1-byte difference to the fixed 16-byte
difference. The probability of this differential is typically higher than that of the trail, since
several different trails can contribute to the same differential. In the case of 2-round AES,
Keliher and Sui [63] proved that for a random round constant, the probability of the differential
in Figure 2.18 is actually 2−30 + 74 · 2−35 ≈ 2−28.272.
If we consider additionally that the round constant is not random, but in our case fixed to
(00, 00, 00, 00)> for the relevant state bytes, the transition probabilities can increase even further.
For example, the differential in Figure 2.19 is satisfied with probability 22 · 2−32 ≈ 2−27.54. With
this differential, the probability of the 8-round trail is increased to 24×27.54 = 2−110.16.

Collision Attack on 16 Rounds

Since the permutation involves no round keys, we can try to satisfy the conditions for some active
F -functions with message modification. We will try to find messages (or rather, initial structures

HECTOR D3.3 Page 40 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

00 00 00 40

00 00 00 00

00 00 00 00

00 00 00 00

 SB7−−→

00 00 00 ??

00 00 00 00

00 00 00 00

00 00 00 00

SR
MC
AC7−−→

00 00 00 ??

00 00 00 ??

00 00 00 ??

00 00 00 ??

 SB7−−→

00 00 00 2b

00 00 00 61

00 00 00 61

00 00 00 cd

 SR
MC7−−→

cd 61 a3 56

cd a3 c2 2b

4c c2 61 2b

81 61 61 7d

22 · 2−32 ≈ 2−27.54

Figure 2.19: Differential for F -function with probability 2−27.54

for intermediate Simpira states) such that the conditions for several rounds are satisfied “for
free” with probability 1, and append the 8-round trails - described in the previous paragraph -
to be satisfied probabilistically. We first propose a simple initial structure covering 6 rounds,
and then improve it to satisfy all conditions over 8 rounds, thus extending the previous 8-round
trail to a 16-round trail with the same probability.

Initial structure for 6 rounds. It is sufficient to set the 4 bytes x1, x6, x11, x12 of a state
SAi to a suitable assignment in order to follow the trail for this F -function deterministically. We
will refer to these 4 bytes as the diagonal in the following, and to a valid assignment as a valid
diagonal. We can reuse one precomputed valid diagonal for all necessary diagonals.
We want to fix the values of the diagonals in SA1 , SA3 , and SA5 to the valid diagonal. Observe
that SA1 = SC3 , and SA3 = SC5 . Thus, by fixing the diagonals of SA5 and SC5 , we have already
satisfied 2 F -trails. The remaining 12 + 16 + 12 bytes of SA5 , S

B
5 , S

C
5 can be filled arbitrarily,

which will immediately determine the value of SD3 and thus SD,MC2
3 . If we now set the diagonal

of SC3 to the valid diagonal, and fill its remaining 12 bytes with arbitrary values, we completely
determine SD5 via SB4 and SA4 , and thus complete the state after 4 rounds. By varying the 52
arbitrary byte values, we can obtain the necessary 2110.16 candidates to satisfy the 8-round trail.
The approach is illustrated in rounds 1–6 of Figure 2.20, where and mark the 52 arbitrary
bytes.

Improved initial structure for 8 rounds by matching diagonals. With some additional
effort, we can find initial structures that also satisfy the F -trail in round 7. We will again
initialize the values of SA5 , S

B
5 , S

C
5 , S

C
3 as in the previous 6-round initial structure. However, we

can use the 12 + 12 arbitrary bytes of SA5 and SC5 to obtain a valid diagonal in SA7 . This will
provide us with a 16-round collision attack with the same computational complexity as the
8-round trail discussed above.
Our goal is to obtain a match between the diagonals of SD,MC2

5 and SA,MC2
6 , as illustrated in

Figure 2.20. If these two diagonals sum to zero, the diagonal of SA7 will take the exact same
value as that of SC5 , which is the valid diagonal. For this purpose, we want to initialize part of
the initial structure to generate random values in SA,MC2

6 , and independently a different part of
the initial structure, to independently get random values in SD,MC2

5 . Then, any match between
the two corresponds to an initial structure that satisfies 4 F -trails.
Assume that SC3 and SB5 are already fixed to some arbitrary constants, with the valid diagonal
in SC3 . We first use the free bytes of SA5 to randomize SA,MC2

6 . Any complete assignment of SA5
will directly determine SA,MC2

6 via SA,MC2
5 and SA6 . We can assume the values are distributed

reasonably close to uniformly random, since the values are processed by 4 AES rounds, and
only 4 input bytes are fixed.
Independently, we can vary the 12 bytes of SC5 to randomize the diagonal of SD,MC2

5 . To see
the independence of the values in SA5 , consider the diagonal of SA,MC2

4 . Its values will always
be identical to that of SD,MC2

5 , except for the first column, which is influenced by the round
constant and will be considered separately in a moment. Since the diagonals of SA5 and SC3

HECTOR D3.3 Page 41 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

R
1

SB
SR
MC

AC
SB
SR
MC

SB
SR
MC

AC
SB
SR
MC

SA1 SB1 SC1 SD1
R

3

SB
SR
MC

AC
SB
SR
MC

SB
SR
MC

AC
SB
SR
MC

SA3 SB3 SC3 SD3

R
5

SB
SR
MC

AC
SB
SR
MC

SB
SR
MC

AC
SB
SR
MC

SA5 SB5 SC5 SD5

R
7

SB
SR
MC

AC
SB
SR
MC

SB
SR
MC

AC
SB
SR
MC

SA7 SB7 SC7 SD7

R
2

SB
SR
MC

AC
SB
SR
MC

SB
SR
MC

AC
SB
SR
MC

SA2 SB2 SC2 SD2

R
4

SB
SR
MC

AC
SB
SR
MC

SB
SR
MC

AC
SB
SR
MC

SA4 SB4 SC4 SD4

R
6

SB
SR
MC

AC
SB
SR
MC

SB
SR
MC

AC
SB
SR
MC

SA6 SB6 SC6 SD6

R
8

SB
SR
MC

AC
SB
SR
MC

SB
SR
MC

AC
SB
SR
MC

SA8 SB8 SC8 SD8

?
?
?

?

?
?
?

?

SA9 SB9 SC9 SD9

· · · 8 rounds, probability 2−110.16 · · ·
SA17 SB17 SC17 SD17

Figure 2.20: 16-round collision attacks on Simpira-4 hash using 8-round initial structure.
fixed difference, valid diagonal, arbitrary bytes, matching inputs, ? match

HECTOR D3.3 Page 42 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

are fixed and predetermined, these values can further be traced back right to SD,MC2
3 . Thus,

knowing the diagonal of SD,MC2
3 is equivalent to knowing the target diagonal of SD,MC2

5 , except
for 1 byte in s1. This equivalent diagonal is derived easily from SC5 , again by 4 AES rounds via
SD4 , S

D,MC2
4 , SC4 .

Evaluating the missing match byte s1 of SD,MC2
5 . Now we still need to account for the

missing byte s1. Fortunately, with some minor modifications of our guessing strategy, this value
can also be computed directly from SD,MC2

3 . Instead of varying all 12 arbitrary bytes of SA5 to
produce our matching candidates, we will keep the first column (bytes s0, s2, s3) fixed. In fact,
for simplicity, we will set them to the exact same values as the first column of SC3 :

SA5 [0, . . . , 3] = SC3 [0, . . . , 3].

This implies that the values of the first column and diagonal (bytes s0, . . . , s3, s6, s11, s12) must
be identical between SD,MC2

3 and SA,MC2
4 . By partially inverting the last few steps of F , we can

also easily verify that this means that

SD,AC3 [0] = SA,AC4 [0].

To determine our target value s1 in SD,MC2
5 , consider a differential view of the intermediate

variables in the computations F (SA4) and F (SD5). The input values are identical, but a difference
in s0 is introduced by AddConstant. We are interested in how this difference ∆SAC propagates
to the target byte in ∆SMC2. Since we only introduced a single-byte difference before the final
MixColumns, we get

∆SMC2[1] = 01 ·∆SSB2[0]

= S
(
SA,AC4 [0]

)
⊕ S

(
SA,AC4 [0]⊕∆SAC[0]

)
.

By using the previously established identities between F (SA4) and F (SD3), and observing
∆SAC[0] = 07 ⊕ 0A = 0D, we finally obtain all our target match bytes in SD,MC2

5 directly
from F (SD3):

SD,MC2
5 [1] = SA,MC2

4 [1]⊕∆SMC2[1]

= SA,MC2
4 [1]⊕ S

(
SA,AC4 [0]

)
⊕ S

(
SA,AC4 [0]⊕ 0D

)
= SD,MC2

3 [1]⊕ S
(
SD,AC3 [0]

)
⊕ S

(
SD,AC3 [0]⊕ 0D

)
,

SD,MC2
5 [6] = SD,MC2

3 [6],

SD,MC2
5 [11] = SD,MC2

3 [11],

SD,MC2
5 [12] = SD,MC2

3 [12].

Complexity of generating initial structures. Summarizing, we can now generate a large
number of initial structures as follows. First, fix the diagonals in SC3 and SC5 to any valid
diagonal. Fix all remaining bytes of SC3 and SB5 to arbitrary values. Copy the valid diagonal
and first column of SC3 to SA5 . Vary the remaining 9 bytes of SA5 , storing the resulting values
of the diagonal of SA,MC2

6 in a list. Independently vary the 12 bytes of SC5 , derive the diagonal
of SD,MC2

5 , and store it in a second list. Any match between the two lists gives a valid initial
structure that follows the differential trail up to round 8.

HECTOR D3.3 Page 43 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

If we only wanted one match on the 4 bytes of the diagonal, we could try 216 values each for
SA5 and SC5 , and would expect roughly 22·16−32 = 1 match due to the birthday effect. However,
consider using 232 values each instead. The expected number of 4-byte matches is roughly
22·32−32 = 232. Now we evaluate the complexity for generating these 232 solutions. Computing
the match bytes requires to evaluate 2 · 2 · 232 = 234 F -functions. Since 16-round Simpira-4
evaluates more than 16 = 24 F -functions, this corresponds to a complexity of about 232−4 = 230

Simpira-4 evaluations. Thus, we were able to produce solutions with amortized complexity less
than 1. With this initial structure, we obtain a 16-round collision with computational complexity
about 24×27.54 = 2110.16. The memory requirements are only about 232 · 2 AES states.

2.6 Conclusion

The main research focus of this chapter are cryptanalytic techniques that capture the concept
of “non-ideal” keys: related-key attacks, known-key attacks, and related-tweakey (differential)
attacks. These techniques have been applied to Rijndael-160/160 and Rijndael-192/192, iFeed,
MANTIS-5, and Simpira v1. The result of this security exercise is an improvement of the
best-known cryptanalytic attacks on these ciphers. These techniques often exploit undesired
mathematical relations that exist between sub/round keys. The lack of independent, random
secret variables can affect the security strength of the cryptographic primitive at several stages,
such as for example the number of active S-boxes, the necessary security margin in the number
of rounds, etc.
Although each of these research results stands on its own, the main lesson that can be learned
from this cryptanalysis is that the lack of independent keying material (e.g. subkeys, round
keys, etc.) could strongly reduce the cryptographic strength of an algorithm. In practice, such
dependencies in the keying material can be caused either externally by non-ideal randomness
sources, or internally by cryptographic constructions using (parts of) the block cipher with
interdependent or biased inputs. This shows that designers of cryptographic primitives should
not limit their security evaluation to linear and differential cryptanalysis, but should also consider
related-key attacks, known-key attacks and related-tweakey (differential) attacks when assessing
the mathematical strength of their algorithms.

HECTOR D3.3 Page 44 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

Chapter 3

Weak Cipher Model: cryptanalysis of
hash functions

3.1 Introduction

Cryptographic hash functions are often constructed based on permutations or block ciphers,
and security proofs are typically done in the ideal permutation or cipher model. In this model,
the underlying ciphers are assumed to behave ideally. However, in practice this assumption
does not necessarily hold, as for example demonstrated in Sect. 2.5. As a result, once these
random primitives are instantiated in the hash functions, vulnerabilities of these instantiations
may nullify the security. For example, Biryukov et al. [19] derived a related-key attack on
AES and claimed that it invalidates the security of the Davies-Meyer compression function
when the underlying primitive is instantiated with AES. A more recent approach in the design
of cryptographic hash function is to base the compression function on a limited number of
permutations [22, 83, 85, 100, 106]. These permutations could be designed from scratch, or
obtained by fixing a small set of keys and using a block cipher for these keys only. Related- or
chosen-key attacks on block ciphers do not help the adversary here, as the keys are fixed.
While in the classical security models for block ciphers the key is secret and randomly drawn
and the adversary’s target is to distinguish the instantiation of the cipher from a random
permutation (also known as (strong) pseudorandom permutation security), this notion does not
apply if the key is known to the adversary. At ASIACRYPT 2007, Knudsen and Rijmen [68]
introduced known-key security of block ciphers. Here, the key is presumed known, and the
adversary succeeds in distinguishing if it identifies a structural property of the cipher. Andreeva
et al. [3] proposed a way to formalize the known-key security of block ciphers based on the
underlying primitives. The model is derived from the indifferentiability framework [81] and
hence all composition results carry over. Intuitively: suppose some cryptosystem F is proven
to achieve a certain level of security in the ideal permutation model, and consider F′ to be F
with the permutations replaced by independent block cipher instantiations. Then, F′ achieves
the same level of security as F, up to the known-key indifferentiability bound of the underlying
block ciphers.
In [3], several block cipher constructions are proven to be known-key indifferentiable, such as the
multiple Even-Mansour cipher and 14 rounds of balanced Feistel with random functions (using a
result of Holenstein et al. [56]). However, many constructions also have been demonstrated not to
be known-key indifferentiable. Just to give one example, Knudsen and Rijmen demonstrated that
the Feistel network on n bits with 7 rounds (called “Feistel7”) is not known-key indifferentiable
[3, 68]: an adversary can generically find 2n/2 plaintext/ciphertext tuples (m, c) and (m′, c′)

HECTOR D3.3 Page 45 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

satisfying Rin/2(m ⊕ c ⊕m′ ⊕ c′) = 0 (where Rir(x) outputs the r rightmost bits of x). This
result has lead to a wave of other known-key attacks on practical constructions, including
generalized/extended variants of Feistel, reduced versions of AES or Rijndael, reduced variants
of the block ciphers underlying SHA-2 and SHA-3 finalists BLAKE and Skein, and many more.
In any of these cases, the traditional and commonly employed ideal cipher/permutation model
falls short: results achieved in this model do not necessarily hold if the primitives are instantiated
with Feistel7, AES8, or any other known-key distinguishable cipher.
This observation has led to the fundamental question whether known-key attacks invalidate
the security of primitive-based hash functions and was the starting point of our research. The
outcome is the Weak Cipher Model (WCM): a model that goes beyond the traditional ideal
cipher model as well as the principle of known-key attacks and that allows to generically analyze
the impact of various weaknesses of block ciphers on various block cipher- and permutation-based
cryptosystems. To our knowledge, we are the first to formally analyze the effect of a wide class
of block cipher attacks on higher level cryptographic functions. Nonetheless, the weak cipher
model is in essence still a model: we use an abstraction of the cryptanalytic known-key attacks
in such a way that the ideal cipher model can be relaxed to cope with them. Furthermore,
we apply our weak cipher model to various Block cipher-Based and Permutation-Based Hash
Functions. The results of this chapter were published at ASIACRYPT 2015 [84].

3.2 The Weak Cipher Model

Notation

If X is a set, by x
$←− X we denote the uniformly random sampling of an element from X. By

X
∪←− x, we denote X ← X ∪ {x}. For a bit string x, its bits are numbered x = x|x| · · ·x2x1.

If C ⊆ {1, . . . , |x|}, the function BitsC(x) outputs a string consisting of all bits of x whose
index is in C. Abusing notation, BitsC(x) always denotes the remaining bits (technically,
C = {1, . . . , |x|}\C). For 0 ≤ r ≤ |x|, we consider Rir(x) that outputs the r rightmost bits of
x. In other words, Rir(x) = Bits{1,...,r}(x). For a function f , by dom(f) and rng(f) we denote
its domain and range, respectively. For κ ≥ 0 and n ≥ 1, by BC(κ, n) we denote the set of all
block ciphers with κ-bit key operating on n bits. If κ = 0, BC(n) := BC(0, n) denotes the set of
all n-bit permutations. If Φ is a predicate, by BC[Φ](κ, n) we denote the subset of ciphers of
BC(κ, n) that satisfy predicate Φ. For π ∈ BC[Φ](κ, n), the input-output tuples are denoted
(k, x, z), where π(k, x) = πk(x) = z and π−1(k, z) = π−1

k (z) = x. The key k is omitted in case
κ = 0.

3.2.1 Security Model

Let F : {0, 1}s → {0, 1}n be a compressing function instantiated with ` ≥ 1 primitives from
BC[Φ](κ, n), for some predicate Φ. Throughout, we consider security of F in an idealized
model: we consider an adversary A that is a probabilistic algorithm with oracle access to a

randomly sampled primitive π = (π1, . . . , π`)
$←− BC[Φ](κ, n)`. A is information-theoretic and

its complexity is only measured by the number of queries made to its oracles. The adversary
can make forward and inverse queries to its oracles, and these queries are stored in a query
history Q.
A collision-finding adversary A for F aims at finding two distinct inputs to F that compress to
the same range value. In more detail, we say that A succeeds if it finds two distinct inputs
X,X ′ such that F(X) = F(X ′) and Q contains all queries required for these evaluations of F.

HECTOR D3.3 Page 46 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

We define by

Advcol
F (A) = Pr

(
π

$←− BC[Φ](κ, n)`, X,X ′ ← Aπ : X 6= X ′ ∧ F(X) = F(X ′)
)

the probability that A succeeds in this. By Advcol
F (q) we define the maximum collision advantage

taken over all adversaries making q queries.
For preimage resistance, we focus on everywhere preimage resistance [99], which captures
preimage security for every point of {0, 1}n. Let Z ∈ {0, 1}n be any range value. Then, we
say that A succeeds in finding a preimage if it obtains an input X such that F(X) = Z and Q
contains all queries required for this evaluation of F. We define by

Advepre
F (A) = max

Z ∈{0,1}n
Pr
(
π

$←− BC[Φ](κ, n)`, X ← Aπ(Z) : F(X) = Z
)

the probability that A succeeds, maximized over all possible choices for Z. By Advepre
F (q) we

define the maximum (everywhere) preimage advantage taken over all adversaries making q
queries.
If Φ is a trivial relation, we have BC[Φ](κ, n) = BC(κ, n), and the above definitions boil down
to security in the ideal cipher model (ICM) if κ > 0 or the ideal permutation model (IPM) if
κ = 0. On the other hand, if Φ is a non-trivial predicate, it strictly reduces the set BC(κ, n). In
this case, we will refer to the model as the WCM for both κ > 0 and κ = 0. Very informally,
this model still involves random ciphers/permutations, with the difference that an adversary
may exploit certain additional properties. The modeling of a randomly drawn weak ciphers is
much more delicate.

3.2.2 Random Weak Cipher

For a certain class of predicates, we discuss how to model a randomly drawn weak cipher
π from BC[Φ](κ, n). Let A,B ∈ N. We will consider predicates that imply, for every
k ∈ {0, 1}κ, the existence of A sets of B distinct queries {(x1, z1), . . . , (xB, zB)} that sat-
isfy ϕk

(
{(x1, z1), . . . , (xB, zB)}

)
for some condition ϕ depending on key k. The predicate is

denoted Φ(A,B, ϕ). A is merely a technical parameter, and throughout we assume it is larger
than q, the number of oracle calls an adversary can make. This definition of Φ(A,B, ϕ) is
fairly general. Particularly, predicate B-sets may overlap and the condition ϕ can represent any
function on the inputs. We note that Φ can be easily generalized to tuples of different length
and/or to multiple types of conditions at the same time.
Traditionally, an adversary has only forward πk(x) and inverse π−1

k (z) query access. In order
for the adversary to be able to exploit the weakness present in π, we give it additional access
to π via a “predicate query” πΦ

k (y): on input of y ∈ {1, . . . , A}, the adversary obtains a B-set
{(x1, z1), . . . , (xB, zB)} that satisfies ϕk

(
{(x1, z1), . . . , (xB, zB)}

)
.

A formal description of how to model π
$←− BC[Φ(A,B, ϕ)](κ, n) is given in Figure 3.1. Here, for

every k ∈ {0, 1}κ, Pk is an initially empty list of πk-evaluations, where a regular forward/inverse
query adds one element (x, z) to Pk and a πΦ

k -query may add up to B elements. Additionally,
PΦ
k is an initially empty list of queries to πΦ

k . We denote by Σk(Pk, P
Φ
k) ⊆ ({0, 1}n × {0, 1}n)B

the set of all tuples {(x1, z1), . . . , (xB, zB)} such that

1. x1, . . . , xB are pairwise distinct and z1, . . . , zB are pairwise distinct;

2. ∀B`=1 : x` ∈ dom(Pk) =⇒ z` = Pk(x
`) and z` ∈ rng(Pk) =⇒ x` = P−1

k (z`);

HECTOR D3.3 Page 47 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

procedure πk(x)

if Pk(x) = ⊥:

z
$←− {0, 1}n\rng(Pk)

Pk
∪←− (x, z)

end if
return Pk(x)

procedure π−1
k (z)

if P−1
k (z) = ⊥:

x
$←− {0, 1}n\dom(Pk)

Pk
∪←− (x, z)

end if
return P−1

k (z)

procedure πΦ
k (y)

if PΦ
k (y) = ⊥:

{(x1, z1), . . . , (xB, zB)} $←− Σk(Pk, P
Φ
k)

for ` = 1, . . . , B:
if (x`, z`) 6∈ Pk:
Pk

∪←− (x`, z`)
end if

end for

PΦ
k

∪←− (y, {(x1, z1), . . . , (xB, zB)})
end if
return PΦ

k (y)

Figure 3.1: Random weak cipher π. An adversary has access to π, π−1, and πΦ.

3. ϕk
(
{(x1, z1), . . . , (xB, zB)}

)
holds;

4. {(xp(1), zp(1)), . . . , (xp(B), zp(B))} 6∈ rng(PΦ
k) for any permutation p on {1, . . . , B}.

For a new query πΦ
k (y), the response is then randomly drawn from Σk(Pk, P

Φ
k). Conditions (1-3)

are fairly self-evident; note particularly that an existing (x, z) ∈ Pk may appear in multiple
predicate queries. Condition (4) assures that the drawing from Σk(Pk, P

Φ
k) is not just an old

predicate query or a reordering thereof. The usage of this set Σk(Pk, P
Φ
k) allows for a uniform

behavior of πΦ
k for every k, and in general of π

$←− BC[Φ(A,B, ϕ)](κ, n), modulo the known
existence of condition ϕ. This step is fundamental to our model and new compared with previous
approaches of [26,27,75]. We remark that the model allows adversaries to make their queries
at their own discretion, e.g., duplicate queries and regular queries after predicate queries are
allowed.

3.2.3 Random Abortable Weak Cipher

Security analyses in the WCM are significantly more complex than in the ICM or IPM, which is
in part because predicate queries may consist of older queries. This will particularly be an issue
once collisions among queries are investigated. To suit the analysis for this case, we transform the
WCM to an abortable weak cipher model (AWCM), which we denote as BC[Φ(A,B, ϕ)](κ, n).
At a high-level, an abortable weak cipher responds to predicate queries with new query tuples
only, and aborts once it turns out that an older query appears in a newer predicate query.
For any k ∈ {0, 1}κ and partial Pk and PΦ

k , define by Σ̄k(P
Φ
k) ⊆ ({0, 1}n × {0, 1}n)B the set of

all tuples {(x1, z1), . . . , (xB, zB)} such that

3. ϕk
(
{(x1, z1), . . . , (xB, zB)}

)
holds;

4. {(xp(1), zp(1)), . . . , (xp(B), zp(B))} 6∈ rng(PΦ
k) for any permutation p on {1, . . . , B}.

Σ̄k(P
Φ
k) differs from Σ(Pk, P

Φ
k) in that conditions (1) and (2) are omitted, and particularly: it is

independent of Pk. A formal description of a random cipher π̄
$←− BC[Φ(A,B, ϕ)](κ, n) is given

in Figure 3.2. It deviates from Figure 3.1 as follows: for every key k, π̄Φ
k responds randomly from

Σ̄k(P
Φ
k), and it aborts if the response violates one of the two skipped conditions of Σk(Pk, P

Φ
k).

HECTOR D3.3 Page 48 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

procedure π̄k(x)

if Pk(x) = ⊥:

z
$←− {0, 1}n\rng(Pk)

Pk
∪←− (x, z)

end if
return Pk(x)

procedure π̄−1
k (z)

if P−1
k (z) = ⊥:

x
$←− {0, 1}n\dom(Pk)

Pk
∪←− (x, z)

end if
return P−1

k (z)

procedure π̄Φ
k (y)

if PΦ
k (y) = ⊥:

{(x1, z1), . . . , (xB, zB)} $←− Σ̄k(P
Φ
k)

for ` = 1, . . . , B:
if x` ∈ dom(Pk) ∧ z` 6= Pk(x

`): abort
if z` ∈ rng(Pk) ∧ x` 6= P−1

k (z`): abort
if (x`, z`) ∈ {(x1, z1), . . . , (x`−1, z`−1)}: abort
if (x`, z`) 6∈ Pk:
Pk

∪←− (x`, z`)
end if

end for

PΦ
k

∪←− (y, {(x1, z1), . . . , (xB, zB)})
end if
return PΦ

k (y)

Figure 3.2: Random abortable weak cipher π̄. An adversary has access to π̄, π̄−1, and π̄Φ.

The next lemma shows that the WCM and AWCM are indistinguishable as long as the abortable
weak cipher does not abort, approximately up to the birthday bound. Here, we assume that
Σ̄k(P

Φ
k) is always large enough.

Lemma 1. Let π̄
$←− BC[Φ(A,B, ϕC)](κ, n). Consider an adversary that makes q queries to π̄.

Then,

Pr (π̄ sets abort) ≤ B2q(q + 1)

2n − B!q2n

|Σ̄k(∅)|

.

Proof. Consider the ith query, for i ∈ {1, . . . , q}, and assume it is a predicate query π̄Φ
k (y). We

will consider the probability that this query makes π̄ abort, provided it has not aborted so far.
Prior to this ith query, |Pk| ≤ B(i− 1) and |PΦ

k | ≤ i. Basic combinatorics shows that

|Σ̄k(P
Φ
k)| = |Σ̄k(∅)| −B! · |PΦ

k | ,

where we use that π̄ has not aborted so far. This ith query aborts only if for some ` ∈ {1, . . . , B},
the value x` equals an element in dom(Pk) ∪ {x1, . . . , x`−1} or the value z` equals an element in
rng(Pk) ∪ {z1, . . . , z`−1}.
Define by Σ̄abort

k (PΦ
k) the set of all elements of Σ̄k(P

Φ
k) that would lead to abort. We have 2B

possible values to cause the abort (namely, x1, . . . , zB), and it causes the abort if it equals an
element in a set of size at most |Pk|+B. For any of these 2B(|Pk|+B) choices, the number of

tuples in Σ̄k(P
Φ
k) complying with this choice is at most |Σ̄k(∅)|

2n
. Thus,

Pr
(
π̄Φ(y) sets abort

)
=
|Σ̄abort

k (PΦ
k)|

|Σ̄k(PΦ
k)| ≤

2B(|Pk|+B) · |Σ̄k(∅)|
2n

|Σ̄k(∅)| −B! · |PΦ
k |
≤ 2B2i

2n − B!q2n

|Σ̄k(∅)|

.

The proof is completed by summation over i = 1, . . . , q.

HECTOR D3.3 Page 49 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

3.3 Modeling Known-Key Attacks

We next apply the WCM to known-key attacks. For the sake of explanation, we first reconsider
the Knudsen-Rijmen attack on Feistel7 [68]. Let n ∈ N, and let π := πk be an instance of Feistel7
with fixed key k. Knudsen and Rijmen revealed four functions f, f ′, g, g′ : {0, 1}n/2 → {0, 1}n
such that for all y ∈ {0, 1}n/2:

g(y) = π(f(y)) and g′(y) = π(f ′(y)) ,

Rin/2 (f(y)⊕ g(y)) = Rin/2 (f ′(y)⊕ g′(y)) .
(3.1)

These four functions depend on the cryptographic primitive underlying Feistel7 in a complicated
way. Therefore, we can safely assume that these functions behave sufficiently random, besides
this particular relation (3.1), and that they are unknown to the adversary. f, f ′, g, g′ are all
injective and satisfy f(y) 6= f ′(y) and g(y) 6= g′(y) for all y. On the other hand, collisions of the
form f(y) = f ′(y′) and g(y) = g′(y′) may occur.
Generically, the attack demonstrates that for key k there exist 2n/2 possibly overlapping sets
of distinct queries {(x1, z1), (x2, z2)} that satisfy Rin/2

(
x1 ⊕ z1 ⊕ x2 ⊕ z2

)
= 0. In other words,

Feistel7 meets predicate Φ(2n/2, 2, ϕFeistel7), where

ϕFeistel7
k

(
{(x1, z1), (x2, z2)}

)
: Rin/2

(
x1 ⊕ z1 ⊕ x2 ⊕ z2

)
= 0 .

Here, we remark that the Knudsen-Rijmen attack works for any fixed but known key k, and
that condition ϕFeistel7

k is in fact independent of the key. In this work, we will consider a more
general predicate Φ(A,B, ϕC) for A,B ∈ N and C ⊆ {1, . . . , n}, where

ϕCk
(
{(x1, z1), . . . , (xB, zB)}

)
: BitsC

(
x1 ⊕ z1 ⊕ · · · ⊕ xB ⊕ zB

)
= 0 . (3.2)

This generalized predicate considers the case of arbitrary but fixed and known keys, where the
adversary can even choose the key every time it makes a predicate query. Note that also similar
attacks on AES8 and Threefish36 are covered, as they satisfy Φ(2n/8, 2, ϕC) for certain C of
size 10n/16 and Φ(2n/8, 4, ϕ{1,...,n}), respectively. In general, all rebound- or boomerang-based
known-key attack in literature are covered by predicate Φ(A,B, ϕC) for some A,B,C. Here, B
is always a value independent of n (usually 2 or 4) and C is regularly a large subset (of size at
least n/4). Throughout, we consider A to be sufficiently large.

Basic Computations for AWCM

For the specific condition ϕC of (3.2), we derive a simpler bound on the probability that a

primitive π̄
$←− BC[Φ(A,B, ϕC)](κ, n) aborts, along with some other elementary observations for

π̄. To this end, we define the notation “[X]”, which equals 1 if X holds and 0 otherwise. For
conciseness, we introduce the function δB,C [b] defined as

δB,C [b] = 2|C|[B = b] + [B > b] =

2|C| if B = b ,

1 if B > b ,

0 otherwise .

(3.3)

Lemma 2. Let π̄
$←− BC[Φ(A,B, ϕC)](κ, n). Consider an adversary that makes q ≤ 2n−1/B

queries to π̄. Then,

Pr (π̄ sets abort) ≤ B2q(q + 1)

2n −Bq . (3.4)

HECTOR D3.3 Page 50 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

Let k ∈ {0, 1}κ and let Z,Z ′, Z ′′ ∈ {0, 1}n. Consider any new query π̄Φ
k (y) and assume it does

not abort. Write the response as {(x1, z1), . . . , (xB, zB)}. Then,

1. ∀ a ∈ {1, . . . , B} : Pr (xa = Z), Pr (za = Z) ≤ 1
2n−Bq ;

2. ∀ a ∈ {1, . . . , B} : Pr (xa ⊕ za = Z) ≤ δB,C [1]

2n−Bq ;

3. ∀ {a, b} ⊆ {1, . . . , B} : Pr
(
xa ⊕ za = Z ∧ xb ⊕ zb = Z ′

)
≤ δB,C [2]

22n−Bq ;

4. ∀ {a, b} ⊆ {1, . . . , B} :

Pr
(
xa = Z ∧ xb = Z ′ ∧ xa ⊕ za ⊕ xb ⊕ zb = Z ′′

)
≤ δB,C [2]

23n−Bq .

Proof. Recall from the proof of Lem. 1 that

|Σ̄k(P
Φ
k)| = |Σ̄k(∅)| −B!|PΦ

k | ,

where |PΦ
k | ≤ q. For the specific predicate analyzed in this lemma, |Σ̄k(∅)| = (2n)2B−12n−|C|. In

the remainder, we regularly bound B! ≤ B · (2n)2B−2 for B ≥ 1 or B! ≤ B · (2n)2B−4 for B ≥ 2.

Probability of abortion. The bound of (3.4) directly follows from Lem. 1, the above-mentioned
size of Σ̄k(∅), and the bound on B!.

Part (i). Define by Σ̄
(i)
k (PΦ

k) the set of all elements of Σ̄k(P
Φ
k) that satisfy xa = Z. Then,

|Σ̄(i)
k (PΦ

k)| ≤ (2n)2B−22n−|C|, and

Pr (xa = Z) =
|Σ̄(i)

k (PΦ
k)|

|Σ̄k(PΦ
k)| ≤

1

2n −Bq .

A similar analysis applies to the case za = Z.
Part (ii). Define by Σ̄

(ii)
k (PΦ

k) the set of all elements of Σ̄k(P
Φ
k) that satisfy xa ⊕ za = Z. We

make a distinction between B = 1 and B > 1. In case B > 1, a similar reasoning as in (i) applies,

and we have |Σ̄(ii)
k (PΦ

k)| ≤ (2n)2B−22n−|C|. On the other hand, if B = 1, we have |Σ̄(ii)
k (PΦ

k)| = 0

if BitsC(Z) 6= 0 and |Σ̄(ii)
k (PΦ

k)| ≤ 2n if BitsC(Z) = 0. In any case,

|Σ̄(ii)
k (PΦ

k)| ≤ (2n)2B−22n−|C|δB,C [1] ,

and

Pr (xa ⊕ za = Z) =
|Σ̄(ii)

k (PΦ
k)|

|Σ̄k(PΦ
k)| ≤

δB,C [1]

2n −Bq .

Part (iii). This part only applies to B > 1; if B = 1 the probability equals 0 by construction.

Define by Σ̄
(iii)
k (PΦ

k) the set of all elements of Σ̄k(P
Φ
k) that satisfy xa ⊕ za = Z and xb ⊕ zb = Z ′.

We make a distinction between B = 2 and B > 2. In case B > 2, a similar reasoning as in (i)

and (ii) applies, and we have |Σ̄(iii)
k (PΦ

k)| ≤ (2n)2B−32n−|C|. On the other hand, if B = 2, we have

|Σ̄(iii)
k (PΦ

k)| = 0 if BitsC(Z ⊕ Z ′) 6= 0 and |Σ̄(iii)
k (PΦ

k)| ≤ (2n)2 if BitsC(Z ⊕ Z ′) = 0. In any case,

|Σ̄(iii)
k (PΦ

k)| ≤ (2n)2B−32n−|C|δB,C [2] ,

and

Pr
(
xa ⊕ za = Z ∧ xb ⊕ zb = Z ′

)
=
|Σ̄(iii)

k (PΦ
k)|

|Σ̄k(PΦ
k)| ≤

δB,C [2]

22n −Bq .

HECTOR D3.3 Page 51 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

Group G1 Group G2

1 4

5 8

9 12

1

2 3

6 7

10 11

2

Figure 3.3: The 12 PGV compression functions. When in iteration mode, the message comes in
at the top. The groups G1 and G2 refer to Lem. 3.

Part (iv). The approach is fairly similar to case (iii). If B = 1 the probability is 0 by

construction. Define by Σ̄
(iv)
k (PΦ

k) the set of all elements of Σ̄k(P
Φ
k) that satisfy xa = Z, xb = Z ′,

and xa ⊕ za ⊕ xb ⊕ zb = Z ′′. In case B > 2, we have |Σ̄(iv)
k (PΦ

k)| ≤ (2n)2B−42n−|C|. On the other

hand, if B = 2, we have |Σ̄(iv)
k (PΦ

k)| = 0 if BitsC(Z ′′) 6= 0 and |Σ̄(iv)
k (PΦ

k)| ≤ 2n if BitsC(Z ′′) = 0.
In any case,

|Σ̄(iv)
k (PΦ

k)| ≤ (2n)2B−42n−|C|δB,C [2] ,

and

Pr
(
xa = Z ∧ xb = Z ′ ∧ xa ⊕ za ⊕ xb ⊕ zb = Z ′′

)
=
|Σ̄(iv)

k (PΦ
k)|

|Σ̄k(PΦ
k)| ≤

δB,C [2]

23n −Bq .

3.4 Application to PGV Compression Functions

We consider the 12 block cipher-based compression functions from Preneel, Govaerts, and
Vandewalle (PGV) [97]. In the ICM these constructions achieve tight collision security up
to about 2n/2 queries and preimage security up to about 2n queries [23, 24, 39, 107]. The 12
constructions are depicted in Figure 3.3. Here, we follow the ordering of [24], where PGV1,
PGV2, and PGV5 are better known as the Matyas-Meyer-Oseas [80], Miyaguchi-Preneel, and
Davies-Meyer [88] compression functions.
Baecher et al. [4] analyzed the 12 PGV constructions under ideal cipher reducibility, which at
a high level covers the idea of two constructions being equally secure for the same underlying
idealized block cipher. They divide the PGV functions into two classes, in such a way that if some
block cipher makes one of the constructions secure, it makes all functions in the corresponding
class secure. Applied to our WCM, the results of Baecher et al. imply the following:

Lemma 3 (Ideal Cipher Reducibility of PGV [4], informal). Let π
$←− BC[Φ](n, n) for some

predicate Φ. Let

G1 = {1, 4, 5, 8, 9, 12} , and G2 = {2, 3, 6, 7, 10, 11} .

HECTOR D3.3 Page 52 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

For any α ∈ {1, 2} and i, j ∈ Gα, PGVi and PGVj achieve the same level of collision and
preimage security once instantiated with π.

Baecher et al. also derive a reduction between the two classes, but this reduction requires a
non-direct transformation on the ideal cipher π,1 making it unsuitable for our purposes. Thanks
to Lem. 3, it suffices to only analyze PGV1 and PGV2 in the WCM: the bounds carry over
to the other 10 PGV constructions. In Sect. 3.4.1 we analyze the collision security of these
functions in the WCM. The preimage security is considered in Sect. 3.4.2.

3.4.1 Collision Security

Theorem 1. Let n ∈ N. Let α ∈ {1, 2} and consider PGVα. Suppose π
$←−

BC[Φ(A,B, ϕC)](n, n). Then, for q ≤ 2n−1/B,

Advcol
PGVα(q) ≤ B2δB,C [1]q2

2n
+

(
B

2

)
2δB,C [2]q

2n
+

4B2q2

2n
.

Proof. We focus on PGV2. The analysis for PGV1 is a simplification due to the absence

of the feed-forward of the key. We consider any adversary that has query access to π
$←−

BC[Φ(A,B, ϕC)](n, n) and makes q queries. As a first step, we move from π to π̄
$←− BC[Φ(A,B, ϕC)](n, n).

By Lem. 2, this costs us an additional term B2q(q+1)
2n−Bq .

A collision for PGV2 would imply the existence of two distinct query pairs (k, x, z),
(k′, x′, z′) such that k ⊕ x ⊕ z = k′ ⊕ x′ ⊕ z′. We consider the ith query (i ∈ {1, . . . , q})
to be the first query to make this condition satisfied, and sum over i = 1, . . . , q at the end. For
regular (forward or inverse) queries, the analysis of [23,24,107] mostly carries over. The analysis
of predicate queries is a bit more technical.
Query π̄k(x) or π̄−1

k (z). The cases are the same by symmetry, and we consider π̄k(x) only.
Denote the response by z. There are at most B(i − 1) possible (k′, x′, z′). As z is randomly
drawn from a set of size at least 2n −Bq, it satisfies z = k ⊕ x⊕ k′ ⊕ x′ ⊕ z′ with probability at
most B(i−1)

2n−Bq .

Query π̄Φ
k (y). Denote the query response by {(k, x1, z1), . . . , (k, xB, zB)}. In case the B-set

contributes only to (k, x, z), the same reasoning as for regular queries applies with the difference
that any query of the B-set may be successful and that the bound of Lem. 2 part (2) applies:
B2δB,C [1](i−1)

2n−Bq .

Now, consider the case the predicate query contributes to both (k, x, z) and (k, x′, z′). There
are

(
B
2

)
ways for the predicate query to contribute (or 0 if B = 1). By Lem. 2 part (3), which

considers the success probability for any such combination, the predicate query results in a

collision with probability at most
(
B
2

) δB,C [2]2n

22n−Bq .

Conclusion. Taking the maximum of all success probabilities, the ith query is successful with

probability at most
B2δB,C [1](i−1)

2n−Bq +
(
B
2

) δB,C [2]2n

22n−Bq . Summation over i = 1, . . . , q gives

Advcol
PGV2(q) ≤ B2δB,C [1]q2

2(2n −Bq) +

(
B

2

)
δB,C [2]q

2n −Bq +
B2q(q + 1)

2n −Bq ,

where the last part of the bound comes from the transition from WCM to AWCM. The proof
is completed by using the fact that 2n − Bq ≥ 2n−1 for Bq ≤ 2n−1, and that q + 1 ≤ 2q for
q ≥ 1.

1If π makes the PGV constructions from group G1 secure, there is a transformation τ such that τπ makes the
constructions from G2 secure, and vice versa.

HECTOR D3.3 Page 53 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

We note that the bound gets worse for increasing values of B. This has a technical cause:
predicate queries are counted equally expensive as regular queries, but result in up to B new
query tuples. This leads to several factors of B in the bound. As this work is mainly concerned
with differential known-key attacks for which B is regularly small, these factors are of no major
influence.
The implications of the bound of Thm. 1 become more visible when considering particular
choices of B and C.

1. If B = 1, then Advcol
PGVα(q) ≤ 2|C|q2

2n
+ 4q2

2n
;

2. If B = 2, then Advcol
PGVα(q) ≤ 20q2

2n
+ 4·2|C|q

2n
;

3. If B ≥ 3 (independent of n), then Advcol
PGVα(q) ≤ 5B2q2

2n
+ B2q

2n
.

In other words, for B = 2 and C with |C| ≤ n/2, or for B ≥ 3 constant and C arbitrary, the
PGV functions achieve the same 2n/2 collision security level as in the ICM. On the other hand,
if B = 1, collisions can be found in about 2(n−|C|)/2 queries, and if B = 2 with |C| > n/2, in
about 2n−|C| < 2n/2 queries.

Tightness

For the cases B = 1 and C arbitrary, and B = 2 and C arbitrary such that |C| > n/2, we derive
generic attacks that demonstrate tightness of the bound of Thm. 1. Knudsen and Rijmen [68]
and Sasaki et al. [102,103] already considered how to exploit a known-key pair for the underlying
block cipher to find a collision for the Matyas-Meyer-Oseas (PGV1) and/or Miyaguchi-Preneel
(PGV2) compression functions. Their attacks correspond to our B = 2 case.

Proposition 1 (B = 1). Let n ∈ N. Let α ∈ {1, 2} and consider PGVα. Suppose π
$←−

BC[Φ(A, 1, ϕC)](n, n). Then, Advcol
PGVα(q) ≥ q2

2n−|C|
.

Proof. We construct a collision-finding adversary A for PGV2. It fixes key k = 0, and makes
predicate queries to πΦ

k on input of distinct values y to obtain q queries (k, xy, zy) satisfying
BitsC(xy ⊕ zy) = 0. Any two such queries collide on the entire state, k ⊕ xy ⊕ zy = k ⊕ xy′ ⊕ zy′ ,
with probability at least q2

2n−|C|
. The attack for PGV1 is the same as we have taken k = 0.

Proposition 2 (B = 2 and |C| > n/2). Let n ∈ N. Let α ∈ {1, 2} and consider PGVα.

Suppose π
$←− BC[Φ(A, 2, ϕC)](n, n). Then, Advcol

PGVα(q) ≥ q
2n−|C|

.

Proof. We construct a collision-finding adversary A for PGV2. It fixes key k = 0, and makes
predicate queries to πΦ

k on input of distinct values y to obtain q 2-sets {(k, x1
y, z

1
y), (k, x

2
y, z

2
y)}

satisfying BitsC
(
x1
y ⊕ z1

y

)
= BitsC

(
x2
y ⊕ z2

y

)
. These two queries collide on the entire state,

k ⊕ x1
y ⊕ z1

y = k ⊕ x2
y ⊕ z2

y , with probability at least 1
2n−|C|

. If the adversary makes q predicate
queries, we directly obtain our bound. The attack for PGV1 is the same as we have taken
k = 0.

3.4.2 Preimage Security

Theorem 2. Let n ∈ N. Let α ∈ {1, 2} and consider PGVα. Suppose π
$←−

BC[Φ(A,B, ϕC)](n, n). Then, for q ≤ 2n−2/B,

Advepre
PGVα(q) ≤

(
2Bq

2n

)B
+

2B2δB,C [1]q

2n
.

HECTOR D3.3 Page 54 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

Entering various choices of B and C shows that in the PGV functions remain mostly unaffected
in the WCM if B ≥ 2, and the same security level as in the ICM is achieved [23, 24, 107]. A
slight security degradation appears for B = 1 as preimages can be found in about 2n−|C|.

Tightness

For the case B = 1, we derive a generic attack that demonstrates the tightness of the bound of
Thm. 2.

Proposition 3 (B = 1). Let n ∈ N. Let α ∈ {1, 2} and consider PGVα. Suppose π
$←−

BC[Φ(A, 1, ϕC)](n, n). Then, Advepre
PGVα(q) ≥ q

2n−|C|
.

Proof. Let Z be any given range value with BitsC(Z) = 0 (note that epre guarantees security
for every range point). A preimage-finding adversary A for PGV2 proceeds as follows. It
fixes key k = 0, and makes predicate queries to πΦ

k on input of distinct values y to obtain q
queries (k, xy, zy) satisfying BitsC(xy ⊕ zy) = 0. Any such query hits Z on the entire state,
k ⊕ xy ⊕ zy = Z, with probability at least q

2n−|C|
. The attack for PGV1 is the same as we have

taken k = 0.

3.5 Application to Grøstl Compression Function

We consider the provable security of the compression function mode of operation of Grøstl [45]
(see also Figure 3.4):

FGrøstl(x1, x2) = x2 ⊕ π1(x1)⊕ π2(x1 ⊕ x2) . (3.5)

The Grøstl compression function is in fact designed to operate in a wide-pipe mode, and in
the IPM, the function is proven collision secure up to about 2n/4 queries and preimage secure

up to 2n/2 queries [42]. We consider the security of FGrøstl in the WCM, where (π1, π2)
$←−

BC[Φ(A,B, ϕC)](n)2. We remark that in this section we consider keyless primitives, hence
κ = 0 and the k-input is dropped throughout. We furthermore note that finding collisions and
preimages for FGrøstl is equivalent to finding them for

F′Grøstl(x1, x2) = x1 ⊕ x2 ⊕ π1(x1)⊕ π2(x2) , (3.6)

as FGrøstl(x1, x2) = F′Grøstl(x1, x1 ⊕ x2), and we will consider F′Grøstl throughout.

3.5.1 Collision Security

Theorem 3. Let n ∈ N. Suppose (π1, π2)
$←− BC[Φ(A,B, ϕC)](n)2. Then, for q ≤ 2n−1/B,

Advcol
F′Grøstl

(q) ≤ B4δB,C [1]q4

2n
+

(
B

2

)
2δB,C [2](q2 + 2n/2−|C|q)

2n
+

B2q2

2 · 2n/2 +
4B2q2

2n
.

If we enter particular choices of B and C into the bound, we find results comparable to the case
of Sect. 3.4.1. In more detail, for B = 2 and C with |C| ≤ n/2, or for B ≥ 3 constant and C
arbitrary, FGrøstl achieves the same 2n/4 collision security level as in the ICM [42]. If B = 1, the
bound guarantees security up to about 2(n−|C|)/4, and if B = 2 with |C| > n/2, collisions can be
found in about 2(n−|C|)/2 queries.

HECTOR D3.3 Page 55 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

x1

x2 z

π1

π2

1

x1

x2 z

π1

π2 π3

1

Figure 3.4: Grøstl compression function (left) and Shrimpton-Stam (right).

3.5.2 Preimage Security

Theorem 4. Let n ∈ N. Suppose (π1, π2)
$←− BC[Φ(A,B, ϕC)](n)2. Then, for q ≤ 2n−1/B,

Advepre
F′Grøstl

(q) ≤ 2B2δB,C [1](q2 + 2n/2−|C|q)

2n
+

Bq

2n/2
+

4B2q2

2n
.

3.6 Application to Shrimpton-Stam Compression Func-

tion

In this section, we consider the provable security of the Shrimpton-Stam compression function
[106] (see also Figure 3.4):

FSS(x1, x2) = x1 ⊕ π1(x1)⊕ π3(x1 ⊕ π1(x1)⊕ x2 ⊕ π2(x2)) . (3.7)

This function is proven asymptotically optimally collision and preimage secure up to 2n/2

queries in the IPM [83, 100, 106]. We consider the security of FSS in the WCM, where

(π1, π2, π3)
$←− BC[Φ(A,B, ϕC)](n)3. (As in Sect. 3.5 we consider keyless functions, hence

κ = 0 and the key inputs are dropped throughout.) Our findings readily apply to the generaliza-
tion of FSS of [83]. The analysis of this construction is significantly more complex than the ones
of Sect. 3.4 and Sect. 3.5.

3.6.1 Collision Security

Theorem 5. Let n ∈ N. Suppose (π1, π2, π3)
$←− BC[Φ(A,B, ϕC)](n)3. Then,

1. If B = 1 and C arbitrary, Advcol
FSS

(2(n−|C|)/2−nε)→ 0 for n→∞;

2. If B = 2 and C with |C| ≤ n/2, Advcol
FSS

(2n/2−nε)→ 0 for n→∞;

3. If B = 2 and C with |C| > n/2, Advcol
FSS

(2n−|C|−nε)→ 0 for n→∞;

4. If B ≥ 3 (independent of n) and C arbitrary, Advcol
FSS

(2n/2−nε)→ 0 for n→∞.

Due to the technicality of the proof, the results are expressed in asymptotic terms.

3.6.2 Preimage Security

Theorem 6. Let n ∈ N. Suppose (π1, π2, π3)
$←− BC[Φ(A,B, ϕC)](n)3. Then,

1. If B = 1 and C with |C| ≤ n/2, Advepre
FSS

(2n/2−nε)→ 0 for n→∞;

HECTOR D3.3 Page 56 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

2. If B = 1 and C with |C| > n/2, Advepre
FSS

(2n−|C|−nε)→ 0 for n→∞;

3. If B ≥ 2 (independent of n) and C arbitrary, Advepre
FSS

(2n/2−nε)→ 0 for n→∞.

As for collision resistance, the results are expressed in asymptotic terms. The bounds match the
ones in the IPM, except for the case of B = 1 and |C| > n/2. We leave it as an open problem
to prove tightness of Thm. 6 part (2).

3.7 Conclusion

Within this chapter, the Weak Cipher Model (WCM) has been presented. This model allowed to
assess to what extent known-key attacks on blockciphers influence the security of cryptographic
functions that are based on these known-key blockciphers. The latter includes block cipher-based
and permutation-based hash functions. By applying the WCM model, we could prove that
the PGV compression functions, the Grøstl compression function, and the Shrimpton-Stam
compression function remain mostly unaffected by the generalized weakness. Additionally,
preimage security of the functions turned out to be significantly less susceptible to these types of
weaknesses than collision security. The results can be readily generalized to other primitive-based
functions, such as the permutation-based sponge mode.

HECTOR D3.3 Page 57 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

Chapter 4

Lightweight cryptographic
post-processing

4.1 Introduction

When designing security solutions for resource-constrained devices, there is a strong focus
on efficient cryptographic primitives. Efficiency can be defined in various ways. For some
applications, it could mean low area or low memory footprint. In other applications, the focus
on efficiency could mean that one aims at minimizing the energy consumption or latency. This
work has been addressed in task 3.3 of the HECTOR project, where research has been carried
out on efficient implementations of cryptographic algorithms for constrained devices, with a
particular focus on AEAD and the ongoing CAESAR competition. These results have been
summarized in deliverable D3.1 [82]. However, the traditional approach in designing symmetric
key primitives is to consider in first instance the robustness of these primitives in a mathematical
context (i.e. perform cryptanalysis) and to study its performance requirements. During this
analysis, one just assumes that the symmetric key primitives have a random key as input which
is stored “somewhere”. Where this key exactly comes from, is out of scope of the design and
cryptanalysis. The only assumption that is made, is that the key is completely random and
does not contain weaknesses, such as dependencies on other (sub)keys or a lack of entropy.1

Within this chapter, we now want to zoom in one level deeper and take into account the origin
of the symmetric key. This key could be stored in secure NVM (non-volatile memory), but it
could also originate from a PUF or a TRNG. Let us now focus on the latter two cases: i.e.
the key from a PUF or TRNG is feeded directly into a lightweight cryptographic algorithm.
Note that this excludes security schemes in which the PUF key is not used directly as the
input of a cryptographic algorithm, but rather as a memory encryption key to securely store
cryptographic material generated externally. Furthermore, for the sake of clarity, let us also
assume that the cryptographic key is used as input for a lightweight encryption function.
Note that in the discussion below, this encryption part can be replaced by any lightweight
symmetric-key primitive, such as a MAC or an authenticated encryption scheme, in a straight
forward way. A simplified high-level overview is depicted in Figures 4.1 and 4.2. As shown
in these figures and studied in WP2, PUFs and TRNGs need to be combined with additional
post-processing to guarantee their robustness and security. This post-processing is typically a
combination of algorithmic post-processing (e.g. error-correcting codes (ECC), Von-Neumann’s
post-processing, etc.) and cryptographic post-processing (e.g. cryptographic hash function,
encryption function, etc.). Although this post-processing is needed to ensure properties such as

1This has been extensively discussed in the two previous chapters of this deliverable.

HECTOR D3.3 Page 58 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

unpredictability, it obviously comes with a cost. This leads to the observation that (part of)
the efficiency that is gained by using lightweight cryptographic primitives could be lost due
to the cost of this post-processing. Even more, only optimizing the efficiency of lightweight
cryptographic primitives without considering this post-processing will never result in lightweight
system. Therefore, the research question we wanted to tackle in the HECTOR project, and which
will be discussed further in this chapter, is how to optimize the efficiency of the overall system.

PUF ECC HASH ENCRYPTION

Figure 4.1: PUF is used as input key for cryptographic algorithm.

Digital noise
source

Algorithmic
post-processing

Cryptographic
post-processing

ENCRYPTION

TRNG

Figure 4.2: TRNG provides input key for cryptographic algorithm.

4.2 Optimization by reusing cryptographic primitives

The optimization we propose in the HECTOR project is to combine the cryptographic post-
processing used in PUFs and TRNGs with the lightweight symmetric-key algorithm which makes
use of the cryptographic key. This obviously results in an efficiency gain, more particularly to
a lower footprint of the chip, as a single cryptographic primitives could be reused within the
same system. The optimized system is depicted in Figure 4.3 and 4.4 for PUFs and TRNGs
respectively. The next question that now needs to be solved, is which primitives could be reused
when combining the cryptographic post-processing and the lightweight cryptographic algorithm
(in our example the encryption function). Before we can answer this, we first need to discuss
the cryptographic post-processing used in PUFs and TRNGs respectively.

PUF ECC HASH ENCRYPTION

Figure 4.3: PUF with cryptographic post-processing and encryption combined.

HECTOR D3.3 Page 59 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

Digital noise
source

Algorithmic
post-processing

Cryptographic
post-processing

ENCRYPTION

TRNG

Figure 4.4: TRNG with cryptographic post-processing and encryption combined.

4.2.1 Cryptographic post-processing for PUFs

Typically, the outgoing bits of a PUF, after applying ECC, have non-maximum entropy. The
entropy of a PUF response r is non-maximum because of two reasons: (1) the correlations
and bias of the PUF and (2) additional entropy loss by the helper data algorithm, referred
to as leakage. Indeed, helper data unavoidably leaks information about the PUF response.
A compression step ensures the key k to be nearly uniform. This step is also referred to as
privacy amplification. The total amount of entropy is preserved, but the bit-average increases
by having more input than output bits (i.e. compress the input bits). The well-established
solution is to apply a cryptographic hash function. One computes the key of the PUF as follows:
k = Hash(r).

4.2.2 Cryptographic post-processing for TRNGs

The AIS 31 methodology [65,66] adds mandatory cryptographic post-processing to the TRNG to
ensure unpredictability of the generated numbers in forward and/or backward direction during a
permanent or temporary failure of the entropy source for the highest security levels. Furthermore,
in case of such a failure, the cryptographic post-processing of the TRNG can temporarily serve
as a deterministic random number generator (DRNG). The cryptographic post-processing
block should use an approved cryptographic algorithm depending on the required security level
(direction of unpredictability) and according to the rules defined for cryptographically secure
pseudo-random number generators.
One of the most popular and most robust postprocessing technique is to run the output of a
TRNG design through a cryptographically strong hash function. When high security levels
need to be achieved, then a hash function is not sufficient. If the TRNG must be AIS 20/31
Class PTG.3 compliant, for example a design requirement of demonstrator 1 in WP4, then the
cryptographic post-processing must be DRG.3 compliant. One can always use a DRNG for this
purpose [41], as for example shown in Figure 4.5. We refer to AIS 31 for the full requirements on
having a DRG.3 compliant cryptographic post-processing, such as forward secrecy and enhanced
backwards secrecy [66]. These requirements result in a more complex post-processing algorithm.
However, it can be constructed using a cryptographically secure block cipher.

HECTOR D3.3 Page 60 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

E(s'i, s''i)

s''i

Step i

s'i

Step i + 1 s''i+1s'i+1

Internal state Output

ri

E(s''i, s'i) E(s''i, s'iÅs''i}F(si)Step i

si

Step i + 1 risi+1

Internal state Output

(a)

F(siÅ F(si))

(b)

Figure 4.5: DRNG with forward and enhanced backward secrecy: (a) when using a one-way
function; (b) when using a block cipher behaving as a one way function.

4.3 How to integrate cryptographic post-processing and

lightweight symmetric-key crypto

A first optimization strategy would be to reuse a lightweight block cipher. Indeed, many
designs for cryptographic hash functions and MAC functions are solely based on a block cipher
(such as AES). Therefore, by only using these block cipher-based designs, it is perfectly feasible
to design cryptographic post-processing for PUFs and TRNGs that relies exclusively on this
block cipher. This block cipher is then obviously also reused in the encryption function that
uses the input of the PUF/TRNG as the cryptographic key.
However, one can optimize the overall system even further by using a sponge construction. A
sponge is a mode based on a fixed permutation as underlying primitive that can handle arbitrarily
long input and output sizes. We propose to use a sponge(duplex)-like construction2 where
one can easily combine the functionality of the cryptographic post-processing and the symmetric-
key primitive that needs to use the key (in our example the encryption function). More
specifically, our solution makes use of the motorist construction, an improved mode of operation,
proposed by the authors of Keyak [9], which extends the plain duplex construction of a sponge
primitive. Below, we will briefly recap the motorist-layer construction (see D3.1 [82] for more
details) and then explain the proposed sponge-construction which enables the combination of
cryptographic post-processing and the symmetric-key primitive.

4.3.1 Motorist-layer construction

The Motorist mode has been introduced in [9] in order to specifically target AEAD built on top
of sponge-based cryptographic primitives. The Motorist mode allows to encrypt and to guarantee
the authenticity of sequences of messages in sessions (rather than only a single message). A
message consists of a plaintext and possibly some associated data. The main advantages of the
motorist construction is that it is a mode that can be built on top of any generic cryptographic
sponge primitive and it improves the overall efficiency. The motorist construction is universal,
as it can be applied to any fixed-length permutation with sufficient width. One of the main
differences between the motorist construction and the original duplex construction proposed for
sponges, is that the motorist construction uses the full size of its underlying permutation to
process data, rather than only a part (denoted by the parameter bitrate r).

2The duplex mode [10] is a particular way of using the sponge construction. It allows the alternation of input
and output blocks at the same rate as the sponge construction.

HECTOR D3.3 Page 61 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

We refer to [9,82] for more details on the motorist construction. For the discussion in this chapter,
it is important to note the motorist construction works in sessions. Within the motorist mode,
one can compute a message authentication tag over the full sequence of messages sent/received
since the start of the session. To start a session, the motorist construction takes as input a
secret and unique string, denoted by SUV. The SUV plays the classical role of the secret key
and initialization vector. Once this SUV is “absorbed”, key stream bits (for encryption) and
a message authentication tag (over the entire session) can be computed. Since the motorist
construction is based on the original duplex construction, it inherits its interesting features.
For example, the encryption/decryption process coincides with the absorbing operation of the
sponge construction, so no buffer is needed and plaintexts/ciphertexts can be processed as they
arrive.
It is interesting to note that one of the instances of a sponge construction is exactly a hash
function. During the absorption phase, the input is “absorbed” into the sponge, block by block.
When used as a cryptographic hash function, the output is generated during the squeezing
phase. This is shown in Figure 4.6. Therefore, the absorption phase of the sponge can be used
to hash the SUV, which is the input of our sponge function. But instead of just “squeezing”
the output bits, as would happen in the hash function, we can compute key streams bits based
on the hashed SUV, by applying the motorist layer construction. This corresponds to the use
of a stream cipher with a key equal to the hashed SUV. This is exactly what we need for our
cryptographic post-processing and lightweight encryption function.

P P P P

0

...

absorbing squeezing

...P

outputinput + padding

0

r

c

Figure 4.6: General sponge construction [9].

4.3.2 Duplex-sponge construction

The overall system view is depicted in Figure 4.7. On the left hand side, we have either a
PUF combined with an ECC, or a TRNG combined with algorithmic post-processing. The
output of this building block is denoted by x. We apply padding to this output and split it in
blocks x0, x1, . . . , xn. The padding scheme and size of the blocks xi depends on the choice of
the permutation P chosen in the sponge construction (see below). These blocks are used as
input for the sponge construction, together with the plaintext P0, P1, . . . , Pn. The output of the
sponge construction will be the ciphertexts C0, C1, . . . , Cn. Each Pi and Ci has a length of 128
bits, besides the last blocks Pn and Cn.

HECTOR D3.3 Page 62 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

PUF + ECC

TRNG + algorithmic post-processing
Sponge construction

x0, x1, ... , xn C0, C1, ... , Cn

P0, P1, ... , Pn

Figure 4.7: Overall system view.

The schematics of the proposed sponge construction is shown in Figure 4.8. It consists of two
phases, respectively left and right of the dotted line in the figure. First, the initialization takes
place, where the PUF/TRNG output x is absorbed in the sponge. This secret value x takes
the role of the SUV in the motorist construction, as explained above. This initialization step is
basically a hashing operation. Once the PUF/TRNG output is hashed, it is combined with a
nonce, which is used as the initialization vector of the encryption algorithm. The encryption
algorithm basically generates key stream bits needed for the encryption of the plaintexts. After
each permutation P , a new block of keystream bits Ki is generated. The ciphertext Ci is
computed by xoring Pi and Ki.
The proposed sponge construction can be applied using any secure fixed-length permutation
with sufficient width. For example, one could use the Keccak, Keyak, ASCON or PRIMATEs
permutation, each of them with 12 rounds3. However, since we are aiming for a lightweight
construction, the Keccak permutation with a width of 400 bits might be an interesting option.

P P P P P0 ...

nonce

key-setup (initialization) encryption

x0 x1

K1 K2

...

Kn

P1 P2 PnC1 C2 Cn
xn

Figure 4.8: Sponge construction combining cryptographic post-processing and encryption.

It is important to note that the sponge construction described above is a deterministic process.
When using the same input x and initialization vector, it will generate the same key stream bits
Ki. Therefore, if two different devices need to perform cryptographic operations using the same
key (e.g. respectively encrypting and decrypting data), then both devices need to store the secret
value x. This value will be a non-ideal random number and/or will not have non-maximum
entropy. However, both devices will apply the sponge construction to compute a hashed SUV,
which will then act as an internal key to compute exactly the same key stream bits Ki in both
devices. The same story holds for multiple readouts of the PUF. Due to the post-processing,
the secret value x – having non-maximum entropy – will be reconstructed during each readout.
This value x will then be initialized in the sponge function to an internal key, which is then
used to generate key stream bits Ki. An additional advantage of this approach, is that the PUF
key is never stored in memory during the entire encryption process. This key only exists as
an internal value, i.e. as the output of one of the permutations P during the execution of the
sponge function. This offers additional side channel protection.

3See D3.1 [82] for more details on each of these algorithms.

HECTOR D3.3 Page 63 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

4.4 Conclusion and other use cases

In the discussion above, we have shown that one can improve the efficiency by making use of
the hash-then-encrypt / hash-then-authenticate / hash-then-authenticated encrypt functionality
which is intrinsically built in the duplex(motorist) construction of a sponge function. We applied
this concept to optimize the cryptographic post-processing of PUFs and TRNGs in case of
using lightweight cryptography. However, there are other examples where one needs both a
cryptographic hash function and an (authenticated) encryption function. For example, key
derivation functions are often based on cryptographic hash functions. When this derived key is
then fed into an (authenticated) encryption function, one could apply the same optimization
strategy. Another important example are key agreement protocols. Again, many of these
protocols compute a shared secret value (e.g. by applying the Diffie-Hellman protocol [33]), and
then use this shared secret to derive a shared cryptographic key, which then can be used to
encrypt and/or authenticate data. Again, this can be optimized by directly applying the sponge
construction, discussed above, on the shared secret value.
To demonstrate its feasibility, we applied the proposed optimization strategy in demonstrators 2
and 3 of the HECTOR project (see the deliverables in WP4 for more details). In both these
demonstrators, the output of a PUF and a passphrase - entered by the user - need to be combined
to generate a unique key. Instead of first applying cryptographic post-processing and then
using the derived key in the authenticated encryption function, the output of the PUF (without
hash function) and the passphrase are used directly as input (i.e. SUV) of the authenticated
encryption.
It is also important to note that our approach is not compliant to the current version of the AIS 31
standard. This standard imposes the restriction that the same cipher should not be used for data
enciphering and cryptographic post-processing. Because of this reason, our optimization strategy
cannot yet be applied in commercial applications that need to be AIS 31 compliant, which
hence could limit the immediate commercial adoption. Compliance to the existing standards
is exactly the reason why we applied conventional cryptographic post-processing techniques
for the TRNGs in our demonstrators, instead of this optimized solution based on a sponge
construction. However, the research insights presented in this chapter could be useful inputs for
future versions of the standard, which might accept this sponge-constructions for lightweight
cryptography.

HECTOR D3.3 Page 64 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

Chapter 5

Security degradation of side channel
countermeasures

In this chapter we introduce our proposed framework to analyze the security degradation of side
channel countermeasures in the presence of non-ideal random numbers. We begin by giving some
background on how a typical side channel attack works and a brief overview of countermeasures
that have been proposed in the literature. These countermeasures are the ones which will
be evaluated in Chapter 6 (using side channel measurement simulations) and in Chapter 7
(using real measurements from implementations on the HECTOR boards). Next, we describe
our testing approach proposal which uses as degradation metric the number of measurements
required for an attack to succeed. We also provide here a description of the experimental setup
used in Chapter 7. Lastly, we describe the different sets of non-ideal random numbers that are
used through our study. We employ both synthetic sets, generated by custom scripts according
to certain criteria, as well as real sets, obtained by altering the environmental conditions of a
TRNG implementation running on the HECTOR board.

5.1 Background

Side channel attacks encompass any type of attack against cryptographic implementations that
exploits information emanated through physical channels. Classical examples of exploitable side
channel sources are the execution time [69], the power consumption [70], and the electromagnetic
radiation [44]. All these measurable quantities leak information about the internal operations
performed by an implementation. Side channel attacks exploit the relationship between leakage
of internal operations and secret values processed by the implementations in order to extract
secret cryptographic keys.

5.1.1 Differential side channel attacks

The main steps of a classic differential side channel attack as introduced in [70] are as fol-
lows. Consider an encryption algorithm EK which on input a plaintext P returns a ciphertext
C = EK(P). The algorithm is implemented on an integrated circuit, e.g. an embedded processor,
and parametrized by a secret cryptographic key K stored in the device. In order to mount an
attack, the adversary collects a set of n side channel observations (L1, L2, . . . Ln) for different
executions of the encryption algorithm when processing variable plaintexts (P1, P2, . . . Pn). In
the following we assume the adversary monitors the instantaneous power consumption of the
circuit by e.g. measuring the voltage drop over a shunt resistor connected to the device as

HECTOR D3.3 Page 65 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

shunt

GND

Oscilloscope

Device Under Test

plaintext

ciphertext

0 1 2 3 4 5

x 10
4

50

100

150

200

Samples

Q
ua

nt
iz

ed
 v

ol
ta

ge

Figure 5.1: Experimental setup to measure power consumption of a device (left). Exemplary
power measurement from an AES-128 execution on an embedded processor (right).

depicted on the left hand side of Figure 5.1. Using this setup, the adversary obtains a power
measurement L = (l1, l2, . . . lm) of m samples for each execution of the algorithm. For illustration
purposes, an exemplary power measurement corresponding to a full execution of an AES-128
block cipher encryption on an embedded processor is shown in the right hand side of Figure 5.1.
The 10 transformation rounds can be distinguished in the central repetitive patterns of the plot.
This already indicates that the measurement carries information about the inner workings of
the circuit. We note that similar side channel measurements can be obtained (and exploited) by
monitoring the electromagnetic (EM) emanations of a circuit instead of its power consumption.
This is, in fact, what will be done in Chapter 7.

For convenience, the set of collected side channel measurements can be seen as a matrix L of
size n×m, where each row corresponds to a measurement Li of length m samples. We denote
as sensitive variables vi,k any intermediate computation which depends on known, variable data
(e.g. a part pi of the variable input plaintext Pi) and a guessable part k of the constant secret
key K. The processing of these variables, which are the target of a side channel adversary,
leak information through samples in the power measurement in the form l = f(vi,k). Here f
represents the leakage function of the device which depends, among other factors, on the value
vi,k processed by the device at that particular time.

For the attack to be practical, it is necessary that the adversary chooses a target sensitive
variable for which all possible values of k can be enumerated. This allows to compute a list
of intermediates v̂i,k̃ for each possible key guess k̃ ∈ k and for each execution of the algorithm
1 ≤ i ≤ n. The adversary uses next a power model g to characterize the leakage of the
device. This allows to obtain a prediction leakage array of n samples for each k̃ ∈ k, which
we denote l̂k̃ = ĝ(v̂i,k̃) for all 1 ≤ i ≤ n. Once the leakage prediction arrays are computed,

the last stage of the attack is to employ a statistical distinguisher to compare each l̂k̃ with
the columns of the side channel measurements stored in the matrix L. The outcome of the
comparison is a vector of m samples (one per column of L) for each key guess k̃ ∈ k. For the
correct key, it is expected that the resulting vector exhibits a maximum score in the sample(s)
where vi,k == v̂i,k̃. In contrast, the comparison should yield only low scores for the incorrect keys.

For illustration purposes, we show in Figure 5.2 the outcome of a classical single-bit Differential
Power Analysis (SB-DPA) attack [70] against an AES-128 when selecting as sensitive variable
the output of the first Sbox transformation in SB. The score vector corresponding to the correct
key guess (left) yields clear peaks at the time samples where vi is processed by the device, while
this is not the case for an arbitrary wrong key guess (right).

HECTOR D3.3 Page 66 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

0 1 2 3 4 5

x 10
4

−20

−15

−10

−5

0

5

10

15

20

Samples

A
tta

ck
 s

co
re

0 1 2 3 4 5

x 10
4

−20

−15

−10

−5

0

5

10

15

20

Samples

A
tta

ck
 s

co
re

Figure 5.2: Result of classical SB-DPA attack against an unprotected AES Sbox implementation:
scores for the correct key (left), scores for a representative wrong key (right).

5.1.2 Side channel countermeasures

Countermeasures against side channel attacks are often categorized into two groups [78]: masking
and hiding. A description of each category follows.

Masking. Masking [31, 47] countermeasures aim to randomize the intermediate values pro-
cessed by the implementation in order to make the leakage independent of sensitive vari-
ables. To achieve this all sensitive variables are randomly split into d + 1 shares such that
v = m1�m2� . . .�md+1, where � corresponds to a group operation (or a combination thereof)
and d denotes the order of the masking protection. The security of masking implementations
is achieved by operating on the so-called shares, i.e. m1 . . .md+1, instead than on the sensitive
variable v.

Imagine the case of 1st-order masking with d = 1, where sensitive variables are split as
v = m1 � m2. The masked implementation will leak information about lm1 = f(m1) and
lm2 = f(m2), but not about lv. This characteristic inherently prevents mounting the previously
illustrated SB-DPA attack: since m2 is a fresh random share re-generated at each execution, the
variable m1 = v �m2 leaks no information about v. Because of this property 1st-order masking
provides security against any type of univariate attack, i.e. attacks that perform a sample-wise
analysis in the leakage measurements by applying the distinguisher directly to the columns of L.

However, it is possible for the adversary to improve the attack by combining leakage samples
from the two shares, i.e. from two columns of L. This is referred to as a bivariate attack,
and it requires a pre-processing stage in which, for each measurement 1 ≤ i ≤ n, the leak-
ages lm1 and lm2 are combined into a new value l′ prior to mounting the attack. There are
many proposals on how to combine leakage points, for instance, using the absolute difference
function l′ = |lm1 − lm2| as proposed in [87] or the normalized product combining function
l′ = (lm1 − E{lm1})× (lm2 − E{lm2}) proposed in [98], where E{·} is the sample mean across
all n measurements.

Combining multiple leakage samples per measurement can therefore overcome the security
provided by a masking scheme. In general, a d-order masking scheme can always be broken by a
d+ 1-variate side channel attack that combines information of d+ 1 shares. Despite this, it has
been shown that the complexity of mounting such attacks grows exponentially with the masking
order d [31]. Moreover, finding the correct leakage samples to combine is not a trivial task and
increases the computational complexity of the attack. These characteristics make masking a
sound countermeasure and explains its popularity in the side channel literature.

HECTOR D3.3 Page 67 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

Hiding. Hiding countermeasures [78] aim to remove data dependencies in side channel leak-
age by introducing noise in the measurements. This can be achieved by altering the leakage
characteristics of the device (vertical noise) or by modifying the temporal occurrence of internal
computations (horizontal noise).

Vertical noise can be incorporated by running operations in parallel to the cryptographic imple-
mentation (thus lowering the exploitable information signal available to the the adversary) or
by using dedicated logic styles which make power consumption independent of the processed
data (see e.g. SABL [108] or WDDL [109]). Horizontal noise can be inserted by randomizing the
expected sequence of internal computations (e.g. by adding dummy operations or shuffling order
of of operations) or by manipulating the clock signal (e.g. switch between multiple frequencies,
increase jitter, skip clock cycles, etc.).

In general, the insertion of hiding countermeasures to an implementation will increase the
complexity of mounting an attack in terms of number of measurements. However, and in
contrast to masking, adding noise is not a sound countermeasure by itself as it does not fully
prevent the presence of exploitable leakage in the measurements.

5.2 Testing Framework

The proposed testing approach to analyze the security degradation of side channel countermea-
sures in the presence of non-ideal random numbers is depicted in Figure 5.3. We assume an
adversary that targets an implementation EK equipped with countermeasures which consume
randomness. For the purposes of our study, we model the random number sequences used by
the countermeasures as an external input R to the cryptographic implementation. One of the
goals of the work in task 3.2 is to obtain a metric that captures the security degradation of
the countermeasures. To this end, we propose to use the minimum number of measurements
necessary for the attack to succeed as metric to quantify the adversarial effort.

CRYPTO
EK

random number
sequence R

side channel
measurement L

Metric: number of side channel
traces required to achieve a 90%
success rate for recovering K

plaintext P ciphertext C = EK(P)

Figure 5.3: Our proposed testing approach.

The proposed framework allows to study several scenarios. First and most important, we can
tune the randomness sets R used by the encryption engine to analyze multiple cases: the ideal
situation (random numbers are drawn from a uniform distribution), the worst situation (random
numbers are set to zero, i.e. equivalent to an unprotected implementation) and essentially all
situations in between (random number sequences contain any type of non-ideality). Second, the

HECTOR D3.3 Page 68 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

genericity of the framework allows to accommodate different type of attacks as well as to analyze
any countermeasure that demands randomness. More specifically, we can instantiate any type
of d+ 1-variate attack against any masking protection of order d, as well as any type of hiding-
based countermeasures. And third, it can be used both with simulated measurements (using a
mathematical model to characterize the leakage function f of a device) and real measurements
obtained from an actual implementation (where f is determined by the implementation and/or
platform under attack). The former approach will be used in Chapter 6, while the latter will be
used in Chapter 7.

5.2.1 Experimental setup with HECTOR board

In what follows we describe the experimental setup that will be used in the evaluation of
Chapter 7. The schematic representation of the setup is shown in Figure 5.4. We opt to monitor
the side channel leakage of the target of evaluation (TOE) by measuring its electromagnetic
(EM) emanations. To this end, the setup is placed inside a Faraday cage that minimizes the
influence from external EM sources (e.g. GSM phone signals).

Oscilloscope

PC Power supply

HECTOR motheboard

HECTOR

daughterboard

Faraday cage
Amplifier

Amplifier &

Filter

EM coil

SATAHDMI

Figure 5.4: Side channel analysis measurement setup used for HECTOR experiments.

The TOE, which corresponds here to a crypto engine implemented in the HECTOR daughter-
board, is connected to the HECTOR motherboard either directly through the SATA connector
or indirectly using an HDMI cable. A pickup coil is used to measure the EM emanations from
the TOE and is connected to an amplifier. A PC is used to control the measurement setup and
uses an oscilloscope to digitize the signals obtained from the TOE. We additionally connect a low
noise power supply to the input voltage of the TOE. The components used in the measurement
setup are listed in Table 5.1.

Description Manufacturer Type

Power supply Agilent E3631A
Oscilloscope Teledyne Lecroy WaveRunner 620Zi

Faraday Cage Tescom TC-5970A
RF Amplifier RF Bay LNA-1800

Table 5.1: List of components used in the measurement setup.

HECTOR D3.3 Page 69 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

Figure 5.5 shows a detailed view of the amplification and filtering circuitry used to condition the
EM signal picked up by the coil. It is composed by two low noise amplifiers: the first one is placed
as close as possible to the EM coil (inside the Faraday cage) in order to reduce the influence of
the ambient noise. The second one is located outside the Faraday cage. The signal is then split
in order to get a raw version of it and a filtered one. The filter used for this test was selected
in order to get the best out of the EM signal picked up by the coil, while ensuring that the
frequency of the clock used by the device lied in that frequency range. The selection of antenna
and filtering was done after some preliminary experiments with different combinations (for
instance using different antennas or different filters; or none) on an unprotected implementation
of the Data Encryption Standard (DES) engine, which will be the algorithm implemented in
Chapter 7. A close-up of the loop antenna used during the practical experiments is shown in
Figure 5.6.

Amplifier

LNA-1800

Amplifier

ZFL-1000+

Loop antenna

Splitter

ZFRSC-42-S+

Low-pass filter

SLP-50+ DC-48 MHz

Raw EM Signal

Filtered EM Signal

Figure 5.5: Close look at the amplification and filtering used during the practical measurements.

Figure 5.6: Picture of the loop antenna used during the practical measurements.

Figure 5.7 shows a high level representation of the communication interface between the PC
and the HECTOR motherboard and between the HECTOR motherboard and the HECTOR
daughterboard. This communication framework was built to give flexibility and ease to switch
from one target to another target (a target being a different type of countermeasure for example).

HECTOR D3.3 Page 70 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

HECTOR

Motherboard

(software

Key

Input

Random

Output

HECTOR Daughterboard

C-APDU

R-APDU

Trigger

S
PI

 I
n
te

rf
ac

e

C
om

m
u
n
ic

at
io

n
in

te
rf

ac
e

Ta
rg

et

Figure 5.7: Communication framework used in the experiments.

The HECTOR motherboard implements an APDU (Application Protocol Data Unit - usually
used for smartcard communication) parser programmed in software. The software then transforms
these APDUs into commands recognizable by the communication interface implemented in the
HECTOR daughterboard (read and write commands are available with different parameters)
and transfers them through SPI to the daughterboard. The communication interface then,
depending on the parameters provided with the commands, set or read the key, input and
random used by the target or enable the target to perform an operation. Finally a trigger signal
is available on the daughterboard that indicates the start and the end of operation of the target.
This trigger signal is mainly used to speed up the experiment and get an efficient reference
trigger for the oscilloscope to record the EM traces. The entire HECTOR daughterboard logic is
implemented in VHDL and the targeted HECTOR daughterboard contains a Xilinx Spartan-6
FPGA.

5.3 Generating non-ideal random numbers

In this section we describe the sets of non-ideal random numbers that we use in our study.
We employ two classes of sets: synthetic and real. Synthetic sets are generated by custom
scripts which introduce non-idealities to a proper random number sequence. In contrast, real
measurements are obtained from an actual RNG implementation where non-idealities are intro-
duced through environmental modifications. A detailed description of each class, as well as a
motivation of their suitability to the study in task 3.2, is given in the next subsections.

Note that, in an ideal situation, we would like to have a metric that allows us to quantify the
quality of randomness in the same way that we use the number of measurements to capture the
security degradation. The most commonly used metric in security applications is the min-entropy,
which is directly linked to the success probability of an attacker using the optimal guessing
strategy. However, for evaluating impact of imperfect randomness on the security of side channel
countermeasures, this metric is too general. This is simply because two randomness sources
with the same min-entropy level can have a vastly different impact on the success probability
and the required adversarial effort. We therefore abstain from using min-entropy as metric in
our study and use an alternative approach as described next.

5.3.1 Synthetic sets

Synthetic sets can be generated by inserting non-idealities to a proper random sequence. There
are however many ways in which such non-idealities can be defined. Our approach is to link
them to the statistical tests defined in AIS 31 [65,66] which can detect several type of weaknesses

HECTOR D3.3 Page 71 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

in random data. To this end, we have created different scripts that aim at introducing one type
of weakness and therefore fail a particular AIS 31 test.

We argue that this approach allows us to gain more insight into the security degradation of
countermeasures than using arbitrary imperfections. This is because we can use the results of
our study to determine which type of weaknesses are most severe when it comes to side channel
countermeasures.

Monobit bias. The first family of synthetic sets contain the most straightforward type of
defect that can appear in random number sequences, namely, monobit bias. For a truly random
sequence one naturally expects the number of ones and zeros to be approximately the same.
The verification of this property corresponds to the first statistical test in AIS 31 [65,66], i.e.
the monobit test (T1).

Biasing a sequence can simply be done by favouring the apparition of certain bits. We created
a script that takes a proper random bit sequence and artificially biases it by performing a
uniform replacement of ones by zeros (or viceversa). A nice property of this family of sets, is
that their non-ideality can be nicely quantified by the bias level, which can range from 0% (no
bias) to 100% (fully biased). For illustrative purposes, we provide in Figure 5.8 the histogram
plots (grouped at byte level) of a representative selection of sets biased towards zero with levels
spanning from 0% to 25%, in increments of 5%. The complementary sets, i.e. biased towards
one, can be obtained using the same script.

0 100 200
0

1

2

3

4

x 10
4

Byte value

O
cc

ur
re

nc
es

0 100 200
0

2

4

6
x 10

4

Byte value

O
cc

ur
re

nc
es

0 100 200
0

5

10
x 10

4

Byte value

O
cc

ur
re

nc
es

0 100 200
0

5

10

15
x 10

4

Byte value

O
cc

ur
re

nc
es

0 100 200
0

0.5

1

1.5

2
x 10

5

Byte value

O
cc

ur
re

nc
es

0 100 200
0

1

2

3
x 10

5

Byte value

O
cc

ur
re

nc
es

Figure 5.8: Histogram plots (byte grouping) of random sequences with different biases towards
zero: 0% bias (top left), 5% bias (top middle), 10% bias (top left), 15% bias (bottom left), 20%
bias(bottom middle), 25% bias (bottom right). Each sequence contains 10 million bytes. Note
that plots are at different vertical scale.

Failure to other AIS 31 tests. In contrast to the monobit biased sets, in which the non-
ideality of sequences can be easily captured with their bias level, quantifying the weaknesses
from other statistical defects is more challenging. In order to overcome this, the non-ideality

HECTOR D3.3 Page 72 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

level of the rest of synthetic sets is defined in a more generic manner. In particular, we define the
following three levels: a sequence with small degradation will only fail the target statistical test,
but pass the rest of tests; a sequence with medium degradation will fail the target statistical
test most of the time (at least 90%), but other tests may also fail; lastly, a sequence with large
degradation will always fail the target statistical test (100%), but naturally other test will also fail.

Our scripts take as input a proper random bit sequence (which would pass all the AIS 31 tests)
and subsequently replace small parts of the sequence at random positions. For different types
of weaknesses, alternative replacement methods are chosen. We concentrate on four different
statistical tests from the AIS 31 suite: power test (T2), run test (T3), autocorrelation test (T5)
and entropy test (T8). A description of each method follows.

0 100 200
0

2

4

6
x 10

4

Byte value

O
cc

ur
re

nc
es

0 100 200
0

2

4

6

8
x 10

4

Byte value
0 100 200

0

5

10
x 10

4

Byte value

O
cc

ur
re

nc
es

0 100 200
0

2

4

6
x 10

4

Byte value

O
cc

ur
re

nc
es

0 100 200
0

2

4

6
x 10

4

Byte value
0 100 200

0

2

4

6
x 10

4

Byte value

O
cc

ur
re

nc
es

0 100 200
0

2

4

6
x 10

4

Byte value

O
cc

ur
re

nc
es

0 100 200
0

2

4

6
x 10

4

Byte value
0 100 200

0

2

4

6

8
x 10

4

Byte value

O
cc

ur
re

nc
es

0 100 200
0

2

4

6
x 10

4

Byte value

O
cc

ur
re

nc
es

0 100 200
0

2

4

6
x 10

4

Byte value

O
cc

ur
re

nc
es

0 100 200
0

2

4

6

8
x 10

4

Byte value

O
cc

ur
re

nc
es

Figure 5.9: Histogram plots (byte grouping) of random sequences failing T2 (top), T3 (second
from top), T4 (second from bottom) and T8 (bottom) for small degradation (left), average
degradation (middle), high degradation (right). Each sequence contains 10 million bytes. Note
that plots are at different vertical scale.

HECTOR D3.3 Page 73 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

• Poker test degradation (T2):
The method for degradation consists in the replacement of groups of four bits. The values
to be inserted are chosen at random. Obviously the number of different values to be
inserted should be (much) smaller than sixteen. The use of two different values turns out
to work fine, as it reduces the impact on other tests. After some experiments, it turns out
that it is beneficial if values zero and fifteen are avoided, as those will negatively influence
the monobit test (T1) and the run test (T3). Histogram plots for of random sequences
failing the poker test for different degradation levels are visible in Figure 5.9 (top).

• Run test degradation (T3):
The method for degradation consists to remove or insert runs of a certain length. After
some experimenting it turns out optimal to remove runs of length five as this does not
harm the poker test results. Histogram plots for of random sequences failing the run test
for different degradation levels are visible in Figure 5.9 (second from top).

• Autocorrelation test degradation (T5):
An autocorrelation defect can be achieved by inserting a same sequence or inverted sequence
later in the bit string. The latter works better to avoid influence on monobit and poker
tests. Another improvement was achieved by skipping two out of four bits in the inserted
sequence. Histogram plots for of random sequences failing the autocorrelation test for
different degradation levels are visible in Figure 5.9 (second from bottom).

• Entropy test degradation (T8):
The method used for this type of degradation consists in replacing the bytes 0xab in 0xba
when a ≤ b. Histogram plots for of random sequences failing the entropy test for different
degradation levels are visible in Figure 5.9 (bottom).

5.3.2 Real sets.

The second class of sets used in our study are obtained by intentionally altering the environ-
mental conditions of a TRNG implementation on an FPGA. More specifically, they correspond
to the DC TRNG implementation on the HECTOR Spartan-6 daughter board described in
Deliverable D2.2 and whose complete evaluation will be reported, together with the PLL TRNG,
in Deliverable D2.4.

As part of the evaluation work within WP2, we have obtained 676 sets of 2 million bytes
each with random data from the DC TRNG obtained at different combinations of temperature
(from -40 degrees to 80 degrees, in steps of 10 degrees) and voltages (from 0.9 V to 1.4 V,
in steps of 0.02 V). Half the sets correspond to the case where the TRNG implementation
contains only the entropy source, while for the other half it contains also a post-processing module.

In order to keep the complexity of our study at a reasonable level, we have selected a representa-
tion of these sets to carry out our study. In particular, we use the data obtained at temperatures
(-40,20,80) degrees and voltages (0.9,1,1.1,1.2,1.3,1.4) Volts. The histograms for these sets (once
again grouped at byte level) are shown in Figure 5.10, Figure 5.11 and Figure 5.12, respectively,
when the TRNG implementation contains only the entropy source. These sets are the ones
that exhibit clear non-uniformity in their distributions, and therefore will be analyzed in the
next chapter. We point out here that, as will be described in D2.4, the quality of the random
numbers collected when altering the temperature/voltage conditions of the DC TRNG with

HECTOR D3.3 Page 74 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

post-processing is rather good.

0 100 200
0

5

10

15
x 10

4

Byte value

O
cc

ur
re

nc
es

0 100 200
0

1

2

3
x 10

4

Byte value
O

cc
ur

re
nc

es

0 100 200
0

1

2

3
x 10

4

Byte value

O
cc

ur
re

nc
es

0 100 200
0

0.5

1

1.5

2
x 10

4

Byte value

O
cc

ur
re

nc
es

0 100 200
0

5000

10000

15000

Byte value

O
cc

ur
re

nc
es

0 100 200
0

0.5

1

1.5

2
x 10

4

Byte value

O
cc

ur
re

nc
es

Figure 5.10: Histogram plots (byte grouping) of random sequences obtained at -40 degrees for
different power supply voltages: 0.9 V (top left), 1.0 V (top middle), 1.1 V (top left), 1.2 V
(bottom left), 1.3 V (bottom middle), 1.4 V (bottom right). Each sequence contains 2 million
bytes. Note that plots are at different vertical scale.

5.4 Conclusions

In this chapter we have laid the foundations to carry out our study of the security degradation
of side channel countermeasures. We have proposed and described a generic and flexible frame-
work that allows to determine the effects of non-ideal random number sequences on different
countermeasures. In addition, we have selected as metric to capture the security degradation
the number of measurements necessary for the attack to succeed. Lastly, we have presented the
different sets of non-ideal random number sets to use in the study and argued its suitability.

All these elements will be used in the next two chapters to perform the security degradation
analysis. Chapter 6 will present a generic evaluation that uses side channel simulations in order
to model the leakage of the device, while Chapter 7 will provide actual results when using side
channel measurements obtained from protected cryptographic implementations running on the
HECTOR board.

HECTOR D3.3 Page 75 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

0 100 200
0

2

4

6
x 10

4

Byte value

O
cc

ur
re

nc
es

0 100 200
0

1

2

3
x 10

4

Byte value

O
cc

ur
re

nc
es

0 100 200
0

1

2

3
x 10

4

Byte value

O
cc

ur
re

nc
es

0 100 200
0

1

2

3

4
x 10

4

Byte value

O
cc

ur
re

nc
es

0 100 200
0

0.5

1

1.5

2
x 10

4

Byte value

O
cc

ur
re

nc
es

0 100 200
0

5000

10000

15000

Byte value

O
cc

ur
re

nc
es

Figure 5.11: Histogram plots (byte grouping) of random sequences obtained at 20 degrees for
different power supply voltages: 0.9 V (top left), 1.0 V (top middle), 1.1 V (top left), 1.2 V
(bottom left), 1.3 V (bottom middle), 1.4 V (bottom right). Each sequence contains 2 million
bytes. Note that plots are at different vertical scale.

0 100 200
0

5

10
x 10

4

Byte value

O
cc

ur
re

nc
es

0 100 200
0

1

2

3
x 10

4

Byte value

O
cc

ur
re

nc
es

0 100 200
0

0.5

1

1.5

2
x 10

4

Byte value

O
cc

ur
re

nc
es

0 100 200
0

5000

10000

15000

Byte value

O
cc

ur
re

nc
es

0 100 200
0

5000

10000

15000

Byte value

O
cc

ur
re

nc
es

0 100 200
0

5000

10000

15000

Byte value

O
cc

ur
re

nc
es

Figure 5.12: Histogram plots (byte grouping) of random sequences obtained at 80 degrees for
different power supply voltages: 0.9 V (top left), 1.0 V (top middle), 1.1 V (top left), 1.2 V
(bottom left), 1.3 V (bottom middle), 1.4 V (bottom right). Each sequence contains 2 million
bytes. Note that plots are at different vertical scale.

HECTOR D3.3 Page 76 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

Chapter 6

Simulation-based analysis of security
degradation

In this chapter we provide the first part of the analysis of the security degradation of side channel
countermeasures in the presence of non-ideal random numbers. Our testing approach follows the
methodology laid out in Chapter 5, but we do not process yet real side channel measurements
from an actual implementation. Instead, we use a mathematical model to characterize the
leakage function f of an implementation and generate side channel simulated measurements.
This allows us to provide a more generic analysis of the security of both masking and hiding
countermeasures. In order to verify the soundness of our testing framework, we do however
complement the simulation-based study in this chapter with experimental results obtained on a
legacy embedded microcontroller platform. The results obtained using implementations on the
HECTOR boards will be presented in Chapter 7.

6.1 Introduction

Our simulation-based analysis leverages on the framework and models put forward by Doget
et al. [37] to compare univariate side channel attacks. Using the success rate of an attack as
quality metric, the authors provide comparative results of various attacks against an unprotected
implementation of the AES block cipher. In particular, the authors analyze the following
attacks: single-bit DPA (SB-DPA) [70], all-or-nothing DPA (AON-DPA) [86], generalized DPA
(G-DPA) [86], correlation power analysis (CPA) [28], partitioning power analysis (PPA) [73],
absolute-sum DPA (AS-DPA) [1], and linear regression analysis (LRA) [37]. The analysis
involves two different leakage models: the so-called perfect model (also known as Hamming
weight model) and its generalization coined random linear leakage model.

Our study follows a similar methodology, but we consider instead the case of protected im-
plementations. Rather than comparing attacks, our aim is to quantify the security loss of
countermeasures in the presence of weak random number sequences. Motivated by this, we
restrict our simulation-based study to the perfect leakage model and CPA attacks, which are
the most efficient attack against this type of leakage. Following this, we denote the leakage of a
sensitive variable by l = HW (vi) +B, where HW (vi) is the deterministic part of the leakage
corresponding to the Hamming weight of vi, and B is independent Gaussian noise with mean
zero and standard deviation σ. This definition allows to model the effects of vertical noise
in the side channel measurements by varying the value of σ, i.e. σ = 0 will yields noiseless
measurements (optimal from an attacker’s perspective), while increasing σ will naturally make

HECTOR D3.3 Page 77 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

the attack more difficult. Note that on a realistic setting the value σ is given by both the
measurement setup of the adversary and the characteristics of the target device. This will be
demonstrated in Section 6.5.

In line with the testing approach described in Chapter 5, we consider a side channel adversary
with physical access to a realization of EK storing a secret key K. For the purposes of the study
we assume EK is an implementation of the AES-128 block cipher [95]. We further assume the
sensitive variable targeted by the adversary corresponds to one byte output of the SubBytes

transformation. More formally, the sensitive variable is given by vi,j = Sbox(pi,j ⊕ kj) where
1 ≤ i ≤ n corresponds to the algorithm’s execution with plaintext Pi, the symbol ⊕ denotes
bitwise XOR, and Sbox is the non-linear transformation applied at byte level in SubBytes. The
index 1 ≤ j ≤ 16 identifies the plaintext and subkey bytes involved in the calculation of vi,j.
Since the efficacy of the attack is the same for any selection of j, we assume j = 1 in the
following to simplify notation.

A high-level illustration of our test scenario is depicted in Figure 6.1. We assume an adversary
mounts a CPA attack against an instance of the AES-128 SubBytes transformation protected
with side channel countermeasures.

Figure 6.1: Test scenario: we evaluate the side channel resistance of an AES SubBytes transfor-
mation protected with countermeasures that consume randomness.

6.2 Analysis of unprotected implementation

Before diving into the details of our study, we show the outcome of the simulation framework
assuming univariate attacks against an unprotected implementation. Note that this is the same
setting as studied in [37], and it is equivalent to the particular case in Figure 6.1 in which
randomness is set to zero and, consequently, countermeasures are effectively disabled.

The results of the simulation analysis can be summarized in a single plot, see Figure 6.2. The
black curve indicates the number of measurements needed for the attack to achieve a 90%
success rate in function of different noise levels σ. The success rate is calculated by running
50 independent instances of the attack, each with a different key k. Note that performing
more experiments would lead to more stable results, as our study is naturally sampling-based.
This, however, would significantly increase the computational costs of the analysis, specially
when lots of measurements need to be processed. In order to keep the complexity of our study
at a reasonable level, we opt to set the number of experiments at 50 and set upper bounds
for σMAX = 24 (the maximum noise standard deviation of the setup) and nMAX = 10M (the
maximum number of measurements available to an adversary). Both these values are standard

HECTOR D3.3 Page 78 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

in these type of studies. Note that nMAX = 2M in the experiments involving real TRNG
measurements in which, as this is the amount of data collected in the evaluation from WP2.

Let us focus on the results of a univariate CPA attack as shown in Figure 6.2 (left). For small
values of noise, the number of measurements required for the attack to succeed is very low (less
than 10), and grows up to 3k for the highest noise level tested (σ = 24). The same trend can be
observed in Figure 6.2 (right), which shows the results of a SB-DPA attack. Note however that
the number of measurements for the attack to succeed is in this case significantly larger. This
is because the attack does not exploit all information leaked through the measurements, as it
targets a single bit. This justifies our choice of using only CPA attacks through our study.

10
0

10
1

10
2

10
3

10
4

10
5

2−3 2−2 2−1 20 21 22 23 24

N
um

be
r

of
 m

es
sa

ge
s

Noise std σ

10
0

10
1

10
2

10
3

10
4

10
5

2−3 2−2 2−1 20 21 22 23 24

N
um

be
r

of
 m

es
sa

ge
s

Noise std σ

Figure 6.2: Univariate attacks against an unprotected AES Sbox: CPA (left), SB-DPA (right).

6.3 Analysis of Masking countermeasures

In this section we provide results for the security degradation of masking countermeasures.
We focus on two types of masking schemes: Boolean masking [31,47] and Inner Product (IP)
masking [5]. Although both types of masking can be instantiated at any order d we restrict our
study to the particular case of 1st-order masking which should prevent any type of univariate
attack. The aim of the study is to determine whether the use of non-ideal random numbers
breaks this property and, if so, to quantify the security degradation of the countermeasure.

6.3.1 Boolean Masking

We present here the outcome of the analysis of 1st-order Boolean masking. Recall that, in this
situation, the output of the AES Sbox is given by S(p⊕ k) = m1 ⊕m2, where m2 is a random
value that changes for each execution and m1 = S(p⊕ k)⊕m2 is the masked value which should
not leak any exploitable information about S(p ⊕ k) when masks are drawn from a uniform
distribution. In the following we assume that m2 comes from one of the non-ideal sets presented
in Chapter 5.

Monobit bias. The results for the case of biased random sequences are given in Figure 6.3.
The plot on the left hand side shows results for sets biased towards 0, while the plot on the right
hand side shows results for sets biased towards 1. Note that the security degradation is the
same for both types of bias, i.e. the curves have very similar shapes. The slight differences in

HECTOR D3.3 Page 79 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

the plots stem from our sampling-based approach and should vanish by increasing the number
of independent experiments that determine the 90% success rate (recall this number is currently
set at 50 to keep t he computational effort at a reasonable level).

The most interesting observation is that biasing the random numbers consumed by the counter-
measure enables a univariate CPA attack. For low levels of noise, around 225, 400, 575, 1.5k
and 6.2k measurements are needed to break the implementation for bias levels 25%, 20%, 15%,
10%, and 5%, respectively. The number of measurements naturally increases as the vertical
noise grows, reaching 32k, 52k, 80k, 275k and 650k for the maximum value of σ tested in our
experiments. Note also that the shape and slope of all curves is very similar. In fact, the
only difference is a vertical shift that varies depending on the bias level of the random number sets.

10
0

10
1

10
2

10
3

10
4

10
5

10
6

2−3 2−2 2−1 20 21 22 23 24

Noise std

N
um

be
r

of
 m

es
sa

ge
s

25% bias
20% bias
15% bias
10% bias
5% bias

10
0

10
1

10
2

10
3

10
4

10
5

10
6

2−3 2−2 2−1 20 21 22 23 24

Noise std

N
um

be
r

of
 m

es
sa

ge
s

25% bias
20% bias
15% bias
10% bias
5% bias

Figure 6.3: Univariate CPA attack against AES Sbox protected by 1st-order Boolean masking
with random numbers biased towards 0 (left) and 1 (right).

Failure to other AIS 31 tests. Next, we provide in Figure 6.4 the results obtained when
using random sequences that fail other statistical sets from the AIS 31 suite. The plot on the
left hand side shows results for sets failing T2 (poker test), while the plot on the right hand
side shows results for sets failing T3 (run test), T5 (autocorrelation test) and T8 (entropy test).
In contrast to the previous analysis, we observe that the number of measurements required to
enable a univariate attack is significantly larger. Moreover, for certain sets the attack can not
be mounted even with our upper bound of 10M measurements and for low levels of noise.

Let us first focus on the left hand side plot. Here we observe that the attack is only enabled
when using sets with high and average degradation. In this case, the attack complexity for low
noise levels starts at 35k and 100k measurements, respectively, reaching 5M and 10M for the
highest noise level tested. Using the set with small degradation yields no results, meaning the
attack is never successful. The results from the right hand side plot are even more pronounced.
In particular, only the high degradation sets corresponding to T3 and T5 can be attacked with
a rather high complexity, i.e. starting from 6M measurements for low noise levels. Finally, no
set corresponding to failures to T8 enabled univariate CPA attacks.

Real data from TRNG implementation. The last set of experiments for Boolean masking
corresponds to the analysis with random sequences obtained from a TRNG implementation
subject to temperature and voltage variations. The results are provided in Figure 6.5 when

HECTOR D3.3 Page 80 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

2−3 2−2 2−1 20 21 22 23 24

Noise std

N
um

be
r

of
 m

es
sa

ge
s

high
average
small

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

2−3 2−2 2−1 20 21 22 23 24

Noise std

N
um

be
r

of
 m

es
sa

ge
s

high (T3)
high (T5)

Figure 6.4: Univariate CPA attack against AES Sbox protected by 1st-order Boolean masking
with random numbers failing test 2: poker test (left) and tests 3,5,8: run test, autocorrelation,
entropy (right).

temperature is fixed at -40 degrees (top left), 20 degrees (top right) and 80 degrees (bottom).
The first observation is that, similar to the monobit bias case, univariate CPA attacks are
enabled when using any of the datasets. A second observation is that the vertical shift of the
curves depends on the voltage level. More specifically, the weaker set always corresponds to the
measurements at 0.9 V, while the stronger set is always obtained at 1.4 V.

A closer look at the plots further shows that, for low levels of noise, the most efficient attack at
0.9 V demands always less than 1k measurements independently of the value of temperature. At
1.4 V, this number is more sparse and reaches 7k, 15k, and 30k measurements at -40, 20, and 80
degrees, respectively. For high levels of noise, all random sets obtained at -40 degrees enable a
univariate attack with an upper bound of 2M measurements. This is not the case for 20 and 80
degrees, for which the set obtained at 1.4 V demands already 2M measurements when the noise
standard deviation is 23.

We stress here once again that the sets used in Figure 6.5 correspond to the case where the
TRNG implementation contains only the entropy source. Repeating the same experiments with
the sets obtained when the TRNG implementation contains a post-processing module yields
completely different results. More precisely, the univariate CPA attack never succeeds for any
temperature/voltage combination, even for low levels of noise. This is because, as mentioned in
Chapter 5, the post-processing module limits the effects of temperate/voltage modifications on
the quality of random number sequences.

6.3.2 Inner Product Masking

In this part we extend our analysis of masking countermeasures to other schemes other than
Boolean. We consider in particular the 1st-order Inner Product (IP) masking scheme as proposed
in [5]. Using this construction, the output of the AES Sbox is given by S(p⊕k) = m1⊕ (l2⊗m2).
The variable m2 corresponds to the random share, and l2 is a parameter of the schemes which is
fixed and assumed public information. In our experiments we set l2 = 5 for consistency with the
analysis provided in [5].

Note that the encoding function used in IP masking is more involved than in Boolean masking.

HECTOR D3.3 Page 81 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

10
0

10
1

10
2

10
3

10
4

10
5

10
6

2−3 2−2 2−1 20 21 22 23 24

Noise std

N
um

be
r

of
 m

es
sa

ge
s

0.9 V
1.0 V
1.1 V
1.2 V
1.3 V
1.4 V

10
0

10
1

10
2

10
3

10
4

10
5

10
6

2−3 2−2 2−1 20 21 22 23 24

Noise std

N
um

be
r

of
 m

es
sa

ge
s

0.9 V
1.0 V
1.1 V
1.2 V
1.3 V
1.4 V

10
0

10
1

10
2

10
3

10
4

10
5

10
6

2−3 2−2 2−1 20 21 22 23 24

Noise std

N
um

be
r

of
 m

es
sa

ge
s

0.9 V
1.0 V
1.1 V
1.2 V
1.3 V
1.4 V

Figure 6.5: Univariate CPA attack against AES Sbox protected by 1st-order Boolean masking
with random numbers obtained from a real TRNG when modifying its environmental conditions:
-40 degrees (top left), 20 degrees (top right), 80 degrees (bottom).

This brings some security improvements at the cost of slightly more complex constructions to
operate in the masked domain. For more details on the characteristics of IP masking and its
comparison to IP masking, we refer the reader to [5].

Monobit bias. The results for the case of biased random sequences are given in Figure 6.6.
The plot on the left hand side shows results for sets biased towards 0, while the plot on the
right hand side shows results for sets biased towards 1. Note that, in contrast to Boolean
masking, the security degradation differs in function of the type of bias. More specifically, a
bias towards zero makes the attack more efficient than a bias towards one. The reason for this
is the multiplicative structure of the inner product encoding, i.e. when all bits of m2 tend to
zero the product with l2 is effectively disabled, while this is not the case when the bits tend to one.

Apart from this observation, the experiments corroborate the analysis in [5] highlighting the
improved resilience of IP masking when compared with Boolean masking. For biases towards
zero and low levels of noise, the minimum number of measurements for the attack to succeed is
set to 22k, 55k, 250k, and 1.25M for bias levels 25%, 20%, 15% and 10%, respectively. For biases
towards one, these values increase to 92k, 200k, 325k, and 2.5M, respectively. Independently
of the type of bias, the results show that the sequences with bias level 5% do not enable a
univariate CPA attack with an upper bound of 10M measurements.

HECTOR D3.3 Page 82 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

2−3 2−2 2−1 20 21 22 23 24

Noise std

N
um

be
r

of
 m

es
sa

ge
s

25% bias
20% bias
15% bias
10% bias
5% bias

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

2−3 2−2 2−1 20 21 22 23 24

Noise std

N
um

be
r

of
 m

es
sa

ge
s

25% bias
20% bias
15% bias
10% bias
5% bias

Figure 6.6: Univariate CPA attack against AES Sbox protected by 1st-order IP masking with
random numbers biased towards 0 (left) and 1 (right).

Failure to other AIS 31 tests. The results of the analysis when using the sequences failing
certain AIS 31 tests are provided in Figure 6.7. Note that univariate CPA attacks are only pos-
sible when using the datasets failing T2 (poker test), but not when using datasets corresponding
to T3 (run test), T5 (autocorrelation test) and T8 (entropy test).

Focusing on the plot, we see once again that the results are somewhat similar to what obtained
for Boolean masking, i.e. the attackable sets correspond to the high and average weakness levels.
However, we observe once again a vertical shift of the curves that indicates more measurements
are required to enable the attack. More specifically, low levels of noise demand 175k and 3M
measurements, and the upper bound of 10M is reached at noise levels σ = 2 and σ = 23.5,
respectively.

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

2−3 2−2 2−1 20 21 22 23 24

Noise std

N
um

be
r

of
 m

es
sa

ge
s

high
average
small

Figure 6.7: Univariate CPA attack against AES Sbox protected by 1st-order IP masking with
random numbers failing test 2: poker test.

Real data from TRNG implementation. Lastly, we provide in Figure 6.8 the results of
the analysis when using the random numbers obtained from a TRNG at different tempera-
ture/voltages. In line with previous results we observe that certain sets do enable univariate
CPA attacks, albeit the minimum number of measurements is considerably larger than the case
of Boolean masking. The worst results leading to most efficient attacks are always obtained
at 0.9 V, but in this case we do not see a direct relation between voltage and complexity of
an attack, e.g. for the case at -40 degrees the results at 1.1 V are worse than at 1.0 V. Also

HECTOR D3.3 Page 83 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

noteworthy is the fact that at 80 degrees only the sets at 0.9 V and 1.0 V enable univariate
CPA attacks with an upper bound of 2M measurements.

10
0

10
1

10
2

10
3

10
4

10
5

10
6

2−3 2−2 2−1 20 21 22 23 24

Noise std

N
um

be
r

of
 m

es
sa

ge
s

0.9 V
1.0 V
1.1 V
1.2 V
1.3 V
1.4 V

10
0

10
1

10
2

10
3

10
4

10
5

10
6

2−3 2−2 2−1 20 21 22 23 24

Noise std

N
um

be
r

of
 m

es
sa

ge
s

0.9 V
1.0 V
1.1 V
1.2 V
1.3 V
1.4 V

10
0

10
1

10
2

10
3

10
4

10
5

10
6

2−3 2−2 2−1 20 21 22 23 24

Noise std

N
um

be
r

of
 m

es
sa

ge
s

0.9 V
1.0 V
1.1 V
1.2 V
1.3 V
1.4 V

Figure 6.8: Univariate CPA attack against AES Sbox protected by 1st-order IP masking with
random numbers obtained from a real TRNG when modifying its environmental conditions.

6.4 Analysis of Hiding countermeasures

In this section we provide results for the security degradation of hiding countermeasures. We
focus in particular on techniques which aim to insert horizontal noise in the measurements
by randomizing the expected execution order of inner computations. Recall that side channel
measurements need to be correctly aligned in the time domain in order for the attack to succeed.
If this is not the case, then wrong samples are mixed in the analysis and this increases the
complexity of the attack.

We opt to model the insertion of horizontal noise with a parameter p̂ which captures the proba-
bility of a correctly aligned measurement to occur. Imagine the case, for instance, that temporal
randomization is achieved by shuffling the order in which the Sbox lookups are performed within
the SubBytes transformation. In that case p̂ = 1/16 is the probability that the target Sbox is
processed in the expected time position, i.e. on average, only 1 measurement out of 16 will carry
exploitable information for the attack. The insertion of dummy rounds can be modeled similarly,
i.e. if 16 dummy Sbox lookups are interleaved with an already shuffled implementation, then
the probability of obtaining a measurement with exploitable information decreases to p̂ = 1/32.
Other temporal randomization techniques such as the insertion of random delays could also be

HECTOR D3.3 Page 84 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

modeled by tuning the variable p̂.

It is known from earlier studies on side channel countermeasures that the probability p̂ linearly
reduces the correlation coefficient obtained in a CPA attack. This, in turn, quadratically in-
creases the number of required measurements for the attack to succeed [78]. We naturally expect
this effect to be visible in our results in the form of a vertical shift in the curves. Note also that
there exist techniques to overcome or minimize the noise introduced by hiding countermeasures,
i.e. by using pattern matching to identify and remove temporal misalignments or by using
integration or windowing techniques to reduce their effect [78]. Such techniques are however
highly implementation dependent, and therefore we do not consider them in our study.

In an attempt to abstract from implementation details, we assume that the countermeasure
consumes n bits to determine whether the target Sbox lookup is processed at the expected time
instant. More specifically, the measurement is correct if n = 0 and incorrect otherwise. In an
ideal situation (random bits come from a uniform distribution) this ensures that p̂ = 1/2n. If
random numbers are biased towards 0, then p̂ will not be uniform and the pool of measurements
will contain, on average, more than 1/p̂ exploitable measurements. Based on this observation,
we select for this part of the analysis the random number sets biased towards 0.

Figure 6.9 shows the results obtained. For completeness, we include the case when random
bits have no bias, i.e. equivalent to drawn from a uniform distribution. This is the upper
curve in the plots. As expected, the complexity of the attack decreases in function of the bias
level, i.e. the lower curve corresponds to set with bias 25%. In this case, the adversary would
need approximately 10 times less curves in order to mount the attack. The same trend can
be observed in all cases explored: p̂ = 1/16, p̂ = 1/32 and p̂ = 1/64. The only difference is a
vertical shift in the curves, which depends on the factor p̂ used to model the countermeasure.

6.5 Validation of simulation results

In this last section we validate the soundness of the results obtained using our simulation
framework by comparing them with real CPA attacks. In particular, we analyze an AES-128
software implementation protected by 1st-order Boolean masking. Our TOE is an 8-bit AVR
Atmega163 micro-controller. We select this platform as it has a similar behavior to what we
assumed in our simulation model. More specifically, it exhibits a leakage function very close
to the Hamming weight model. The target implementation is furthermore written in software,
therefore ensuring that shares are no manipulated in parallel (as could be the case for hardware
implementations).

Our 1st-order implementation is based on the design put forward by Herbst et al. in [55]. The
SubBytes operation is computed by means of a masked Sbox table S ′ generated at the start of
each encryption as S ′(x⊕m) = S(x)⊕m′, where m and m′ are the input and output masks,
respectively. Similar to the simulation study, we analyze the cases where m′ is set to zero
(unprotected implementation), m′ comes from a uniform distribution (ideal situation), and m′

comes from a biased distribution. For each of these cases, we have collected a set of power
measurements by monitoring the voltage drop over a 50 Ohm resistor. The TOE runs at a fixed
clock of 3.58 MHz and we set the sampling rate of the oscilloscope at 250 MS/s.

HECTOR D3.3 Page 85 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

2−3 2−2 2−1 20 21 22 23 24

Noise std

N
um

be
r

of
 m

es
sa

ge
s

25% bias
20% bias
15% bias
10% bias
5% bias
0% bias

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

2−3 2−2 2−1 20 21 22 23 24

Noise std

N
um

be
r

of
 m

es
sa

ge
s

25% bias
20% bias
15% bias
10% bias
5% bias
0% bias

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

2−3 2−2 2−1 20 21 22 23 24

Noise std

N
um

be
r

of
 m

es
sa

ge
s

25% bias
20% bias
15% bias
10% bias
5% bias
0% bias

Figure 6.9: Univariate CPA attack against AES Sbox protected by generic hiding countermeasures
with biased random numbers: p̂ = 1/16 (top left), p̂ = 1/32 (top left),p̂ = 1/64 (bottom).

The results of attacking the implementation for different selections of m′ are shown in Figure 6.10.
Each plot shows the outcome of the CPA attack (correlation coefficients) for all possible key
byte hypotheses in function of the number of measurements. The results for the incorrect keys
are plotted in grey, while the result of the correct key is plotted in black. The minimum number
of measurements necessary for the attack to succeed corresponds to the sample where the black
line is distinguishable from the grey lines.

The top left plot corresponds to the unprotected implementation, which can be broken starting
from as few as 35 measurements. The next plots show the outcome of the attack for the cases
where m′ is biased. The number of measurements increases to approximately 250, 500, 700,
2 500 and 20 000 for bias levels 25%, 20%, 15%, 10% and 5%, respectively. Finally, the bottom
plot shows the analysis of the implementation protected with masks drawn from a uniform
distribution. In this case, the attack fails even when analyzing up to 200k measurements 1.

These results are consistent with the outcome of the simulation study. In particular, note that
the number of measurements is very similar to what obtained in our analysis when the noise
standard deviation is around 0.25. This is illustrated in Figure 6.11 recapping the simulation
results and indicating the slice corresponding to our platform (c.f. red vertical line).

1Note that we do not claim this implementation to be side channel secure, but simply point out that a
straightforward univariate CPA attack targeting the HW of the Sbox output fails to succeed with 200k traces. It
could well be possible that alternative attacks targeting other variables or using more complex leakage models
would succeed in breaking the implementation.

HECTOR D3.3 Page 86 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

6.6 Conclusions

In this chapter we have presented the first part of the results of our study on the security
degradation of countermeasures. In order to perform a generic analysis, we have opted to use
simulated side channel measurements obtained by applying the well-known Hamming weight
model with Gaussian noise. A benefit of this approach is that it enables to model the effects of
vertical noise in the measurements through the parameter σ.

The results of our analysis using synthetic random number sequences indicate that monobit
bias is the most damaging defect when it comes to side channel security. In fact, of the rest of
non-idealities that we have tested, only the sets generated to fail the poker test (T2) enable
univariate attacks with an affordable complexity. And even in this case, the security degradation
is orders of magnitude smaller than for monobit bias. The results obtained using the random
sequences from the TRNG implementation (without post-processing) show also a clear security
degradation. We believe the reason for this is that the dominant defect in the TRNG data sets
is actually monobit bias. In fact, we have verified that the bias levels for the different tested
temperature/voltage combinations range from 2.5% to 29%.

Based on these results, we conclude that monobit bias is the most critical non-ideality when
randomness is used for side channel countermeasures. Consequently, if a designer uses an TRNG
implementation for this purpose, it should be preferable to prioritize on-line tests checking the
bias of the generated sequences over other, less critical, types of non-idealities.

HECTOR D3.3 Page 87 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

5 10 15 20 25 30 35 40 45 50

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

C
or

re
la

tio
n

Number of measurements
50 100 150 200 250 300 350 400 450 500

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

C
or

re
la

tio
n

Number of measurements

100 200 300 400 500 600 700 800 900 1000

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

C
or

re
la

tio
n

Number of measurements
100 200 300 400 500 600 700 800 900 1000

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

C
or

re
la

tio
n

Number of measurements

500 1000 1500 2000 2500 3000

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

C
or

re
la

tio
n

Number of measurements
0.5 1 1.5 2 2.5 3

x 10
4

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

C
or

re
la

tio
n

Number of measurements

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

C
or

re
la

tio
n

Number of measurements

Figure 6.10: Univariate CPA attack against AES Sbox implementation protected by 1st-order
Boolean masking running on an AVR 8-bit controller. Results with masks off (top left); masks
with 5% bias (top right); masks with 5% bias (second from top, left); masks with 5% bias
(second from top, right); masks with 5% bias (second from bottom, left); masks with 5% bias
(second from bottom, right); uniform masks (bottom).

HECTOR D3.3 Page 88 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

2−3 2−2 2−1 20 21 22 23 24

Noise std

N
um

be
r

of
 m

es
sa

ge
s

unprotected
25% bias
20% bias
15% bias
10% bias
5% bias

Figure 6.11: 1st-order CPA attack against AES Sbox implementation protected by 1st-order
Boolean masking with random numbers biased towards 0. Red line indicates the noise level of
our AVR platform determined by the results of our experiments.

HECTOR D3.3 Page 89 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

Chapter 7

Experimental-based analysis of security
degradation

In this chapter, we present the second part of the study of the security degradation of coun-
termeasures. In contrast to Chapter 6, we use side channel measurements obtained from real
FPGA implementations in the HECTOR evaluation board using the experimental described
in Chapter 5. In order to keep the computational and storage complexity of the experiments
to a reasonable level, we limit the study to the sets with monobit bias which, as shown in
Chapter 6, are the ones leading to the most security degradation. In our experiments we also
set the maximum number of collected measurements to 1M, which is a common upper bound
for side channel evaluations. The target cryptographic algorithm corresponds to the Data
Encryption Standard (DES) block cipher. In particular, we consider the following protected
implementations:

• DES with Boolean masking

• DES dummy round (horizontal noise)

• DES and vertical noise

• DES dummy round and vertical noise

For each of these implementations, we will first briefly zoom in on the countermeasure principle
that has been implemented, and then discuss the measurement results on the HECTOR board.

7.1 Boolean masking

7.1.1 Countermeasure principle

Recall that the principle behind Boolean masking is to manipulate secret data indirectly by
adding to them a random value. This type of protection works very effectively in the case of
linear operations (for instance addition) where it is possible to remove the mask by adding it in
the same way. The targeted implementation of the Boolean masking in our DES implementation
is represented in Figure 7.1. The figure shows only a bit representation of the Boolean masking,
but byte wise data are the target. In addition, a total of 16 of these structures were present in
the TOE (and therefore 16 key bytes were target) and operations were performed one after each
other (byte per byte). For each of these operations, two clock cycles are used; one to release the
input, key and random data, and one to store the corresponding output. It is important to note

HECTOR D3.3 Page 90 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

that the interest of this experiment lies only into understanding the effect of the random on the
single order resistance.

Register

Register

Register

Register

Clock

Random

Key

Input

Output

Target XOR

Key Masking

Figure 7.1: Boolean XOR masking base circuitry.

7.1.2 Measurement results

As mentioned before, sixteen XOR operations of individual bytes, which correspond to the
16-byte input being XORed with the masked key, occur within the interval shown in the top
graph of Figure 7.2. A univariate CPA attack was performed in order to find the XOR operations
within this interval. A set of 100 000 traces was measured and a null mask was used (equivalent
to countermeasure disabled). It is often the case in practice that alignment of traces needs
to be performed before the attack. In this case, however, there is no countermeasure which
causes horizontal variations in the traces. Thus, skipping the alignment, we directly compute
the correlation between the measured EM signals and the input and output signals, respectively,
as indicated in Figure 7.1.

The attack results are shown in the middle and bottom graphs of Figure 7.2 for the input and
output, respectively. When comparing the results it should be noted that the input correlation
of byte one occurs before the output correlation of byte one, which in turn occurs before the
input correlation of byte two, and so on (this is as expected according to the implementation
details). The interval(s) used for the attack should concur with the output correlation. It is
important to exclude the intervals in which the input correlation occurs, as it can interfere with
the attack calculations. Due to the size of the FPGA and the spreading of the XOR operations
on the chip, the leakage of the bytes were not equally measured by the coil. That is, the coil
could not measure all the EM emissions equally of all the 16 XOR operations. To determine
these bytes, several attacks were executed on the set measured for the input/output correlation

HECTOR D3.3 Page 91 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

analysis using all of the output bytes intervals. By executing multiple attacks and each time
decreasing the number of traces used, the leakage of the different bytes could be determined. In
the end four bytes had similar leakage, namely 3, 5, 7, and 8. The intervals of these four bytes
are shown in the top graph of Figure 7.3. In that situation (no masking), the minimum number
of traces needed to identify the four bytes is 56,000.

Figure 7.2: One of the traces measured during the targeted XOR operation (top). Correlation
with the 16 input bytes (middle). Correlation with the 16 output bytes (bottom).

HECTOR D3.3 Page 92 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

Figure 7.3: Intervals selected for the test (top), with the corresponding output correlation traces
(bottom).

Using the selected intervals, six sets of measurements were made with each using a different
mask coming from our biased random sets. In particular, we used the sets with bias levels
75%, 50%, 25%, 20%, 15% and 5%. For each set, a maximum of 1M traces were measured at a
sampling frequency of 10 GS/s.

The number of traces needed to correctly identify all four bytes for different bias levels are shown
in Table 7.1 and can be visualized as a graph in Figure 7.4. For a 20% bias level, 1M traces
were not enough to identify the four bytes. Because the number of traces was not sufficient to
reveal the selected key bytes for the 20% bias set, it was decided not to investigate the sets with
bias levels 15% and 5%, as it would only lead to an even bigger number of traces needed.

Bias level Number of traces (rounded to the closest 1,000)

No Mask 56,000
75% 90,000
50% 450,000
25% 972,000
20% > 1,000,000

Table 7.1: Results summary of the analysis on the impact of the Boolean masking on the number
of traces needed to retrieve fully all S-Box sub-key candidates.

HECTOR D3.3 Page 93 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

Figure 7.4: Graphical summary of the results with the Boolean masking countermeasure.

7.2 DES dummy round

7.2.1 Countermeasure principle

Figure 7.5 describes the second targeted countermeasure during our practical tests. This
countermeasure consists in the insertion of dummy rounds during an actual DES computation.
The truth table of the countermeasure logic as defined in the Figure 7.5 is shown in Table 7.2.
This corresponds to an inverted XOR operation of the four input random bits. For every new
incoming clock, the random input is regenerated (a new fresh bit is actually shifted in). When
the signal clock enable is set to ’1’ the circuitry corresponding the actual DES is clocked (meaning
that one actual round is achieved). In the other case, a dummy DES round is performed. The
two circuitry are similar, the only difference is that the data (input and key) used by the dummy
DES circuitry is random. In other word, it is not possible to distinguish visually which circuitry
is active at a time (as they use exactly the same hardware). When the number of real DES round
executed reach 16, the DES operation is finished; before that, an unlimited number of dummy
DES rounds can be inserted (the goal was not to reach performance in this case). Figure 7.6
shows two traces recorded during the simultaneous execution of the DES computation when this
countermeasure was enable. As it can be seen from that figure, the time for one DES execution
is not constant from one execution to the next one as the number of inserted dummy round is
dependent on the random input.

HECTOR D3.3 Page 94 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

DES Round

Dummy

DES Round

DES

round key

Dummy DES

round key

DES Clock

Dummy DES Clock

Clock
C
IP
H
E
R

C
O
U
N
T
E
R
M
E
A
S
U
R
E

DES round input data

Dummy DES round input data

Countermeasure

Logic

Clock enable

Random input

4 bits

Register

Register

Figure 7.5: DES Dummy round countermeasures principle.

Figure 7.6: Example of two EM traces recorded during a DES execution when the countermea-
sures is on.

HECTOR D3.3 Page 95 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

Random[3] Random[2] Random[1] Random[0] Out

0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 0 1 1 1
0 1 0 0 0
0 1 0 1 1
0 1 1 0 1
0 1 1 1 0
1 0 0 0 0
1 0 0 1 1
1 0 1 0 1
1 0 1 1 0
1 1 0 0 1
1 1 0 1 0
1 1 1 0 0
1 1 1 1 1

Table 7.2: Truth table of the logic driving the dummy round selection.

7.2.2 Measurement results

In this experiments, we collected measurements with random sets with bias levels 0% (i.e. drawn
from uniform distribution), 25%, 50%, 75%, and 100% (i.e. countermeasure disabled). The first
measured set was performed with the countermeasure disabled. Both the raw and filtered EM
signals were measured and are shown in the first two graphs of Figure 7.7, respectively. To decide
the interval to carry out the attack, the correlation is calculated between the power consumption
and the S-box output of round one. First the correlation with the raw EM signal is calculated
and the result is shown in the third graph of Figure 7.7 in the form of eight superimposed
correlation graphs. No peaks stand out in this correlation result. Calculating the same for the
filtered EM signal gives the result seen in the last graph of Figure 7.7. Here, there are clear
correlation peaks visible.
The interval used for the CPA attack is highlighted in blue in Figure 7.7. 100,000 traces were
not enough for a successful attack when using the raw EM signals. The number of minimum
required traces when using the filtered EM signals was 4,800 (as a comparison 100,000 traces
were not enough for a successful attack when using the raw EM signal). From this result, it was
determined that only the filtered EM signal would be used for the rest of the analysis.
For bias levels 75%, 50%, 25%, and 0%, alignments were again made on the pattern that looks
like a DES round and is the first one following the trigger signal. The correlation between the
power consumption and the S-box output of round one was calculated again and the intervals, in
which correlation was found, were used for the attacks. The results of these tests are summarized
in Table 7.3 and can be visualized as a graph in Figure 7.8.

HECTOR D3.3 Page 96 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

Figure 7.7: From top to bottom: Raw and filtered EM traces measured during the test of the
dummy round countermeasure respectively, eight superimposed correlation traces computed
with the raw EM traces and eight superimposed correlation traces computed with the filtered
EM traces.

Bias level Number of traces (rounded to the closest 200)

Countermeasure disabled 4,800
75% 15,200
50% 27,000
25% 107,600
0% 248,200

Table 7.3: Results summary of the analysis on the impact of the dummy round countermeasure
on the number of traces needed to retrieve fully all S-Box sub-key candidates.

HECTOR D3.3 Page 97 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

Figure 7.8: Graphical summary of the results with the countermeasure which adds vertical noise.

7.3 Vertical noise addition

7.3.1 Countermeasure principle

Figure 7.9 represents the base circuitry of the vertical noise addition countermeasure. It is
composed of 16 registers all connected to the same clock source. For each register, the inverted
output of is connected to the input, creating an oscillation effect on the output. Figure 7.10
illustrates the principle of this countermeasures. Every time the clock is gated, 16 bits are
flipped at the same time (alternatively from ’0’ to ’1’ or ’1’ to ’0’) which will create a current
spike (which will be visible in the measured EM field over the TOE). The clock source used
to drive these registers is the same as the one used by the DES engine but is gated (if a clock
enable is set, the clock is going through and the register can flip, if not, nothing happens).
The clock enable signal is connected to the output of a shift register preloaded, prior to the
DES execution, with a 16 bit random number (one bit for each round of the DES). Finally,
these registers are always reset (default output value is ’0’) prior to every DES execution. In
Figure 7.10 the current spikes are alternatively different to account from the difference in current
consumption when a register is switching from ’0’ to ’1’ and from ’1’ to ’0’.
In total, eight structures like the one shown in Figure 7.9 are implemented in the FPGA alongside
the DES engine (in total 128 registers are used to create vertical noise). All these structures use
different random inputs. Half of these structures are also using a clock gating circuitry where
the clock enable signal is inverted (in order to improve the performance of the circuitry in case
of a bias of the random sequence towards ’0’).

HECTOR D3.3 Page 98 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

Register16-bit Shift Register
Random

Input

Clock enable16 bits

Clock

x16

Register

Register

Figure 7.9: Vertical noise addition base circuitry.

0 1 1 1 0 1 0 1 1 0 0 0 1 1 0 1

Clock

Clock enable

signal

Register current

comsumption

Figure 7.10: Vertical noise addition base circuitry.

7.3.2 Measurement results

In line with previous experiments, we collected measurements for random sets with bias levels
5%, 15%, 20%, 25%, 50%, 75%, and 100% (countermeasure disabled).

The first tested set was obtained for bias level 75%. One of the measured traces is shown in
the top part of Figure 7.11. Correlation with the input and the S-box output of Round 1 is
calculated in order to identify the interval for the attack. No correlation was found with the
S-box output of Round 1, however, correlation with the input was found, as shown in the bottom
graph of Figure 7.11. Thus, the start of the DES is identified, but not the end of the first round
which means that an interval for the attack must be selected in another way. Thus, multiple
intervals were selected and attacks were executed using each of these intervals. The interval
which yield the best result (the least amount of traces to identify all S-Box sub-key candidates)
is highlighted in red in the top graph of Figure 7.11. For that particular random input set (75%),
109,000 traces were needed to identify all the correct S-box sub-keys.
The same analysis was performed for the remaining random sets using the same red interval as
identified in Figure 7.11. The results of these tests are summarized in Table 7.4 and can be
visualized as a graph in Figure 7.12.
There are two important things to note in the results. First, the number of traces to find all the
correct S-Box subkey candidates when the countermeasure is disabled is not the same as for the
first experiment (dummy rounds), even though they both use the same DES engine and target
FPGA. The reason for this difference can be due to several different things:

• Non optimal antenna location

• Different place and route inducing less leakage VHDL files were modified in between the
two measurements to add the new countermeasures)

HECTOR D3.3 Page 99 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

Figure 7.11: From top to bottom: Filtered EM trace measured during the test of the vertical
noise countermeasure with 75% bias and eight superimposed correlation traces showing the
input leakage.

However, the interest here is not to compare countermeasures between each other but to see
the impact of non-ideal random numbers on one particular countermeasure. We stress that
during the measurements for one particular countermeasures, neither the antenna location nor
the FPGA configuration were modified.
The second observation relates to the fact that the maximum number of measurements is not
obtained for unbiased random sequences, which may be expected, but rather when the bias level
is around 20%. The reason for this stems from the design of the countermeasure, which was
build to account for potential biases in the random numbers. In particular, it is expected that
the maximal switching activity of the registers will occur for a bias of roughly 25%, which is
very close to the results obtained in the experiments.

Bias level Number of traces (rounded to the closest 500)

Countermeasure disabled 102,000
75% 109,000
50% 144,000
25% 190,000
20% 231,000
15% 217,000
5% 164,500

Table 7.4: Results summary of the analysis on the impact of the vertical noise countermeasure
on the number of traces needed to retrieve fully all S-Box sub-key candidates.

HECTOR D3.3 Page 100 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

Figure 7.12: Graphical summary of the results with the countermeasure which adds vertical
noise.

7.4 Dummy rounds and vertical noise

7.4.1 Countermeasure principle

This countermeasure corresponds simply to the combination of the two previously presented
countermeasures. Both countermeasure uses different random inputs.

7.4.2 Measurement results

The first measurements used the set with 75% bias level. One of the measured traces is shown
in the top part of Figure 7.13. Correlation with the input and the S-box output of Round 1 is
calculated in order to identify the interval for the attack. No correlation was found with the
S-box output of Round 1, however, correlation with the input was found, as shown in the bottom
graph of Figure 7.13. Thus, the start of the DES is identified, but not the end of the first round
which means that an interval for the attacks must be selected in another way. From the previous
experiments on the dummy round insertion countermeasure, the interval highlighted in red in
the top graph of Figure 7.13 was selected as interval for the attack. For that particular input
biased random set (75%), 119,000 traces were needed to identify all the correct S-box sub-keys.
The same analysis was performed for the other biased sets and the same red interval as identified
in Figure 7.13. The results of these tests are summarized in Table 7.5 and can be visualized as
a graph in Figure 7.14.

HECTOR D3.3 Page 101 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

Figure 7.13: From top to bottom: Filtered EM trace measured during the test of the combi-
nation of the vertical noise and dummy round countermeasures with 75% bias level and eight
superimposed correlation traces showing the input leakage.

Bias level Number of traces (rounded to the closest 200)

Countermeasure disabled 102,000
75% 119,000
50% 322,200
25% 413,000
15% 518,000
5% 662,000

Table 7.5: Results summary of the analysis on the impact of the combination of the vertical
noise and dummy round countermeasures on the number of traces needed to retrieve fully all
S-Box sub-key candidates.

7.5 Conclusions

In this chapter we have presented the second part of the results on our study on the security
degradation of side channel countermeasures. In particular, we have analyzed the effects of
monobit bias sets on protected implementations of the DES cipher running on the HECTOR
board. The results of our experiments, covering a selection of different masking and hiding
techniques, validate the observations made in the previous chapter. In particular, they highlight
the strong impact that biased sequences can have on the security of countermeasures. Note that,
for most cases investigated, attacks become completely feasible when bias levels reach 25%.

HECTOR D3.3 Page 102 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

Figure 7.14: Graphical summary of the results with the combination of the vertical noise and
dummy round countermeasures.

HECTOR D3.3 Page 103 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

Chapter 8

Progress efficient crypto and
countermeasures

In this chapter, we report several results obtained in the context of HECTOR Task T3.4, but
not yet reported in deliverables D3.1 and D3.2. Some of our results bridge several tasks of WP3
and are thus reported here, in the final concluding deliverable of WP3.

8.1 Unified Masking Approach: Application to Ascon

In this section, we perform a practical evaluation of the new Unified Masking Approach (UMA)
published at CHES 2017 by Gross and Mangard [49]. The results and methods reported in this
section originally result from our efforts in Task 3.4: Efficient Countermeasures. To validate the
improvement, we provide an implemention of the method for authenticated cipher Ascon and
confirm both the efficiency of UMA and the design decisions made in Task 3.3: Efficient Crypto.
The implementations are publicly available online at https://github.com/hgrosz/ascon_dom.

8.1.1 Introduction to the Unified Masking Approach

Masking is used to protect software implementations as well as hardware implementations.
However, since it was shown that software based masking schemes (that lack resistance to
glitches) are in general not readily suitable to protect hardware implementations [79], the research
has split into masking for software implementations and masking for hardware implementations.
The implementation costs of every masking scheme is thereby highly influenced by two factors.
At first, the number of shares (or masks) that are required to achieve dth-order security, and
second the randomness costs for the evaluation of nonlinear functions. For the first one, there
exists a natural lower bound of d+ 1 shares in which every critical information needs to be split
in order to achieve dth-order security.
For the evaluation of nonlinear functions, the required number of fresh random bits have a
huge influence on the implementation costs of the masking because the generation of fresh
randomness requires additional chip area, power and energy, and also limits the maximum
throughput. Recently proposed software based masking schemes require (with an asymptotic
bound of d(d+ 1)/4) almost half the randomness of current hardware based masking schemes.
In this work we combine the most recent masking approaches from both software and hardware
in a unified masking approach (UMA). The basis of the generic UMA algorithm is the algorithm
of Barthe et al. which we combine with Domain Oriented Masking (DOM) [50]. The randomness
requirements of UMA are in all cases less or equal to generic software masking approaches. As a

HECTOR D3.3 Page 104 of 139

https://github.com/hgrosz/ascon_dom

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

Key Storage RNG

Ascon Top

State

Round
Counter

Control
FSM

DataxDI

PTCTDataRDYxSI

NoncexDI

StartEncryptionxSI

StartDecryptionxSI

FinalizexSI

KeyxDI ZxDI

TagxDO

DataxDO

DataRDYxSO

BusyxSO

X0

X1

X2

X3

X4

State Register

S-box

Linear
Transform.

DataxDI
KeyxDI

NoncexDI
RoundConstxDI

State:

Figure 8.1: Overview of the Ascon core (left) and the state module of the Ascon design (right)

non-generic optimization, for the second protection order, we also take the solution of Beläıd et
al. into account.
We show how the UMA algorithm can be efficiently ported to hardware and thereby reduce the
asymptotic randomness costs from d(d+ 1)/2 to d(d+ 1)/4. Therefore, we analyze the parts of
the algorithm that are susceptible to glitches and split the algorithm into smaller independent
hardware modules that can be calculated in parallel. As a result, the delay in hardware is at
most five cycles. We refer to the CHES 2017 paper [49] for full details of the UMA algorithm.
In the following, we compare the implementation costs and randomness requirements of UMA
to the costs of DOM in a practical and scalable case study for protection orders up to 15, and
analyze the SCA resistance of the UMA design with a t-test based approach.

8.1.2 Practical Evaluation on Ascon

To show the suitability of the UMA approach and to study the implications on a practical design,
we decide on implementing the CAESAR candidate Ascon [36] one time with DOM and one
time with the UMA approach. We decided on Ascon over the AES for example, because of its
relatively compact S-box construction which allows to compare DOM versus UMA for a small
percentage of non-linear functionality, but also for a high percentage of non-linear functionality
if the S-box is instantiated multiple times in parallel. The design is for both DOM and UMA
generic in terms of protection order and allows some further adjustments. Besides the different
configuration parameters for the algorithm itself, like block sizes and round numbers, the design
also allows to set the number of parallel S-boxes and how the affine transformation in the S-box
is handled, for example.

Proposed Hardware Design

An overview of the top module of our hardware design is given in Figure 8.1 (left). It consists of
a simple data interface to transfer associated data, plaintext or ciphertext data with ready and
busy signaling which allows for simple connection with, e.g., AXI4 streaming masters. Since
the nonce input and the tag output have a width of 128 bit, they are transferred via a separate
port. The assumptions taken on the key storage and the random number generator (RNG) are
also depicted. We assume a secure key storage that directly transfers the key to the cipher core
in shared form, and an RNG that has the capability to deliver as many fresh random bits as
required by the selected configuration of the core.
The core itself consists of the control FSM and the round counter that form the control path,
and the state module that forms the data path and is responsible for all state transformations.
Figure 8.1 (right) shows a simplistic schematic of the state module. The state module has a

HECTOR D3.3 Page 105 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

separate FSM and performs the round transformation in four substeps: (1) during IDLE, the
initialization of the state with the configuration constants, the key, and the nonce is ensured.
(2) in the ADD ROUND CONST state the round constant is added, and optionally other required
data is either written or added to the state registers like input data or the key. Furthermore,
it is possible to perform the linear parts of the S-box transformation already in this state to
save pipeline registers during the S-box transformation and to save one delay cycle. This option,
however, is only used for the configuration of Ascon where all 64 possible S-box instances are
instantiated.
(3) the SBOX LAYER state provides flexible handling of the S-box calculation with a config-
urable number of parallel S-box instances. Since the S-box is the only non-linear part of the
transformation, its size grows quadratically with the protection order and not linearly as the
other data path parts of the design. The configurable number of S-boxes thus allows to choose
a trade-off between throughput and chip area, power consumption, et cetera. During the S-box
calculation the state registers are shifted and the S-box module is fed with the configured number
of state slices with five bits each slice. The result of the S-box calculation is written back during
the state shifting. Since the minimum delay of the S-box changes with the protection order and
whether the DOM or UMA approach is used, the S-box calculation takes one to 70 cycles.
(4) in the LINEAR LAYER state the whole linear part of the round transformation is calculated
in a single clock cycle. The linear transformation simply adds two rotated copies of one state row
with itself. It would be possible to breakdown this step into smaller chunks to save area. However,
the performance overhead and the additional registers required to do so, would relativize the
chip area savings especially for higher orders.

S-box construction. Ascons’s S-box is affine equivalent to the Keccak S-box and takes
five (shared) bits as an input (see Figure 8.2). The figure shows where the pipeline registers
are placed in our S-box design (green dotted lines). The first pipeline stage (Stage 0, grey)
is optionally already calculated in the ADD ROUND CONST stage. The registers after the
XOR gate in State 0 are important for the glitch resistance and therefore for the security of
the design. Without this registers, the second masked AND gate from the top (red paths),
for example, could temporarily be sourced two times by the shares of x1 for both inputs of
the masked AND gate. Because the masked AND gate mixes shares from different domains, a
timing dependent violation (glitch) of the d-probing resistance could occur. Note that the XOR
gates at the output do not require an additional register stage because they are fed into one
of the state registers. As long as no share domains are crossed during the linear parts of the
transformation the probing security is thus given. We assure this by associating each share and
each part of the circuit with one specific share domain (or index) and keeping this for the entire
circuit. The other pipelining registers are required because of the delay of the masked AND
gates which is one cycle for the DOM gate, and up to five cycles for the UMA AND gate [49].

Implementation Results

All results stated in this section are post-synthesis results for a 90 nm Low-K UMC process
with 1 V supply voltage and a 20 MHz clock. The designs were synthesized with the Cadence
Encounter RTL compiler v14.20-s064-1. Figure 8.3 compares the area requirements of the UMA
approach with DOM for the pipelined Ascon implementation with a single S-box instance.
The figure on the left shows the comparison of single masked AND gates inside the Ascon
design, while figure right compares the whole implementations of the design. Comparing this
results with our predictions [49] reveals that the expected gate counts for DOM quite nicely

HECTOR D3.3 Page 106 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

X

X

X

X

x
0

x
1

x
2

x
3

x
4

x'
0

x'
1

x'
2

x'
3

x'
4

(Stage 0) Stage 1-5

X

Figure 8.2: Ascon’s S-box module with optional affine transformation at input (grey) and
variable number of pipeline registers (green)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

200
400
600
800

1,000
1,200
1,400
1,600
1,800
2,000
2,200
2,400
2,600
2,800
3,000
3,200

Protection order

A
re
a
[G

E
]

UMA-AND
DOM-AND

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

20

40

60

80

100

Protection order

A
re
a
[k
G
E
]

Ascon-UMA one S-box
Ascon-DOM one S-box

Figure 8.3: UMA versus DOM area requirements for different protection orders. Left figure
compares masked AND gates, right figure compares full Ascon implementations

match the practical results. For the UMA approach, on the other hand, the practical results are
always lower than the stated numbers. The reduction results from the fact that the amount
of required pipelining registers for the operands is reduced because the pipelining register are
shared among the masked AND gates. This does not affect the DOM implementation because
the multiplication results are always calculated within only one delay cycle.
The right figure shows that the difference for the single S-box Ascon implementation is
relatively low especially for low protection orders, and seems to grow only linearly within the
synthesized range for d between 1 and 15. For the first order implementation both designs
require about 10.8 kGE. For the second order implementation the difference is still only about
200 GE (16.2 kGE for DOM versus 16.4 kGE). The difference grows with the protection order and
is about 4.8 kGE for d = 15 which is a size difference of about 5 %. The seemingly linear growth
in area requirements for both approaches is observed because the S-box is only a relatively small
part with 3-20 % of the design which grows quadratically, while the state registers that grow
linearly dominate the area requirements with 96-80 %.
We also synthesized the design for 64 parallel S-boxes which makes the implementation much
faster in terms of throughput but also has a huge impact on the area requirements (see Figure 8.4).
The characteristics for UMA and DOM look pretty similar to the comparison of the masked
AND gates in Figure 8.3 (left) and shows a quadratic increase with the protection order. The

HECTOR D3.3 Page 107 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

100
200
300
400
500
600
700
800
900

1,000
1,100
1,200
1,300

Protection order

A
re
a
[k
G
E
]

Ascon-UMA 64 S-boxes
Ascon-DOM 64 S-boxes

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

500

1,000

1,500

2,000

2,500

Protection order

T
h
ro
u
gh

p
u
t
[M

bp
s]

UMA 1 S-Box 64 S-Boxes
DOM 1 S-Box 64 S-Boxes

Figure 8.4: UMA versus DOM area requirements for different protection orders and 64 parallel
S-boxes (left) and throughput comparison in the right figure

chip area is now between 28 kGE (d = 1) and 1,250 kGE (d = 15) for UMA and 926 kGE for
DOM. The S-box requires between 55 % and 92 % of the whole chip area.

Throughput. To compare the maximum throughput achieved by our designs we calculated
the maximum clock frequency for which our design is expected to work for typical operating
conditions (1 V supply, and 25 ◦C) over the timing slack for the longest delay path. This frequency
is then multiplied with the block size for our encryption (64 bits) divided by the required cycles
for absorbing the data in the state of Ascon (for six consecutive round transformations).
The results are shown in Figure 8.4. The throughput of both masking approaches with only one
S-box instance is quite similar which can be explained with the high number of cycles required
for calculating one round transformation (402-426 cycles for UMA versus 402 cycles for DOM).
The UMA approach achieves a throughput between 48 Mbps and 108 Mbps, and the DOM
design between 50 Mbps and 108 Mbps for the single S-box variants.
For 64 parallel S-boxes the gap between DOM and UMA increases because DOM requires only
18 cycles to absorb one block of data while UMA requires between 18 and 42 cycles which is a
overhead of more than 130 %. Therefore, also the throughput is in average more than halved
for the UMA implementation. The UMA design achieves between 0.5 Gbps and 2.3 Gbps, and
DOM Ascon between 1.5 Gbps and 2.3 Gbps.

Randomness. The amount of randomness required for the UMA and DOM designs can be
calculated from [49] by multiplying the stated number by five (for the five S-box bits), and
additionally with 64 in case of the 64 parallel S-box version. For the single S-box design, the
(maximum) amount of randomness required per cycle for the UMA design is thus between 5 bits
for d = 1 and 320 bits for d = 15, and for DOM between 5 bits and 600 bits. For the 64 parallel
S-boxes design, the first-order designs already require 320 bits per cycle, and for the 15th-order
designs the randomness requirements grow to 20 kbits and 37.5 kbits per cycle, respectively.

HECTOR D3.3 Page 108 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

8.1.3 Side Channel Evaluation

In order to analyze the correctness and the resistance of our implementations, we performed
a statistical t-test according to Goodwill et al. [46] on leakage traces of the S-box designs of
the UMA variants. We note that t-tests are unfeasible to prove any general statements on the
security of a design (for all possible conditions and signal timings) as it would be required for a
complete security verification. However, to the best of our knowledge there exist no tools which
are suitable to prove the security of higher-order masked circuits in the presence of glitches in
a formal way. T-tests only allow statements for the tested devices and under the limitations
of the measurement setup. Many works test masked circuits on an FPGA and perform the
t-test on the traces gathered from power measurements. This approach has the drawback that
due to the relatively high noise levels the evaluation is usually limited to first and second-order
multivariate t-tests. We use the recorded signal traces from the post-synthesis simulations of
the netlists, which are noise-free and allows us to evaluate the designs up to the third-order.
Because of the simplified signal delay model this evaluation covers only glitches resulting from
cascaded logic gates and no glitches caused by different signal propagation times resulting from
other circuit effects. We emphasize that we use this t-test based evaluation merely to increase
the trust in the correctness and security of our implementation, and keep a formal verification
open for future work.
The intuition of the t-test follows the idea that an DPA attacker can only make use of differences
in leakage traces. To test that a device shows no exploitable differences, two sets of traces are
collected per t-test: (1) a set with randomly picked inputs, (2) a set with fixed inputs and the
according t-value is calculated. Then the t-value is calculated according to Equation 8.1 where
X denotes the mean of the respective trace set, S2 is the variance, and N is the size of the set,
respectively.

t =
X1 −X2√
S2

1

N1
+

S2
2

N2

(8.1)

The null-hypothesis is that the means of both trace sets are equal, which is accepted if the
calculated t-value is below the border of ±4.5. If the t-value exceeds this border then the
null-hypothesis is rejected with a confidence greater than 99.999% for large enough trace sets. A
so-called centered product pre-processing step with trace points inside a six cycle time window
is performed for higher-order t-tests. Beyond this time frame, the intermediates are ensured
to be unrelated to the inputs. We thus combine multiple tracepoints by first normalizing the
means of the trace points and then multiplying the resulting values with other normalized points
inside the time window.

Results. Figure 8.5 shows the results of the t-tests for the time offsets which achieved the
highest t-values for the UMA S-box implementations of Ascon. From top to bottom the figures
show the results for different protection orders from d = 0 to d = 3, and from left to right we
performed different orders of t-tests starting from first order up to third order. Above d = 3
and third-order t-tests the evaluation of the t-tests becomes too time intensive for our setup.
On the y-axis of the figures the t-values are drawn, and the y-axis denotes the used number
of traces at a fraction of a million. The horizontal lines (green, inside the figures) indicate the
±4.5 confidence border. The protection border between the figures (the red lines) separates the
t-tests for which the protection order of the design is below the performed t-test (left) from the
t-tests for which the test order is above (right).

HECTOR D3.3 Page 109 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

Figure 8.5: T-test evaluation for different protection orders d = 0 . . . 3 (from top to bottom)
and for different t-test orders (first to third, from left to right)

As intended, the t-values for the masked implementations below the protection border do not
show any significant differences even after one million noise-free traces. For the unprotected
implementation (top, left figure), for example, the first-order t-test fails with great confidence
even after only a couple of traces, and so do the second and third-order t-tests on the right. The
first-order t-test below of the first-order protected S-box does not show leakages anymore but
the higher-order t-tests fail again as expected. The third-order implementation does not show
any leakages anymore for the performed t-tests. We thus conclude that our implementations
seem to be secure under the stated limitations.

8.1.4 Discussion on the Randomness Costs and Conclusions

In this work, we combined software and hardware based masking approaches into a unified
masking approach (UMA) in order to save randomness and the cost involved. In practice, the
generation of fresh randomness with high entropy is a difficult and costly task. It is, however,
also difficult to put precise numbers on the cost of randomness generation because there exist
many possible realizations. The following comparison should thus not be seen as statement of
implementation results but reflects only one possible realization which serves as basis for the
discussion.
A common way to generate many random numbers is the usage of PRNGs based on symmetric
primitives, like Ascon for example. A single cipher design thus provides a fixed number of
random bits, e.g., 64 bits in the case of Ascon, every few cycles. In the following comparison,
we assume a one-round unrolled Ascon implementation resulting in six delay cycles and 7.1
kGE of chip area [51]. If more random bits are required, additional PRNGs are inserted, which
increase the area overhead accordingly.
Figure 8.6 (left) shows the area results from Section 8.1.2 including the overhead cost for the
required PRNGs. Starting with d = 2 for DOM, d = 3 for UMA for the single S-box variants,

HECTOR D3.3 Page 110 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

101

102

103

104

105

106

Protection order

A
re
a
[k
G
E
]

UMA 1 S-Box 64 S-Boxes
DOM 1 S-Box 64 S-Boxes

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

2

4

6

8

10

Protection order

E
ffi

ci
en

cy
[M

bp
s/
kG

E
]

UMA 1 S-Box 64 S-Boxes
DOM 1 S-Box 64 S-Boxes

Figure 8.6: UMA versus DOM area requirements including an area estimation for the randomness
generation in the left figure, and an efficiency evaluation (throughput per chip area) on the right

and for all of the 64 parallel S-box variants, one PRNG is no longer sufficient to reach the
maximum possible throughput the designs offer. The randomness generation thus becomes
the bottleneck of the design and additional PRNGs are required, which result in the chip area
differences compared to Figures 8.3 and 8.4, respectively. As depicted, both UMA variants
require less chip area than their DOM pendants. However, this comparison does not take the
throughput of the designs into account (see Figure 8.4).
Figure 8.6 (right) compares the efficiency, calculated as throughput (in Mbps) over the chip
area (in kGE). By using this metric, it shows that UMA is the more efficient scheme when
considering the single S-box variants, while DOM is the more efficient solution for the 64 S-box
variants. However, the practicality of the 64 S-box implementations with up to a few millions of
GE and between 30 and 3,600 additional PRNGs is very questionable.
In practice, the most suitable approach for generating random bits and the constraints vary from
application to application. While UMA seems to be the more suitable approach for low-area
applications, DOM introduces less delay cycles which is a relevant constraint for performance
oriented applications. To make our results comparable for future designs and under varying
constraints, we make our hardware implementations available online [48].

8.2 Symbolic analysis of higher-order side channel coun-

termeasures

In Deliverable 3.1 [82] we showed that specifying cryptographic primitives with strong security
properties from the mathematical point of view is a fundamental first step, but it is not enough
for achieving robust devices in practice. Designing, manufacturing and validating devices that
are robust against side channel attacks once in the field is a challenging task. This statement is
even more true when high-order attacks are within the scope, because of the increased size of
data needed by the analysis and the increased complexity of the statistical tools.
This motivates the need for establishing a side channel-aware design methodology. In that context
we introduced a methodology based on the functional specifications of cryptographic circuits,
that is the definition of cryptographic hardware implementations in term of high-level functional

HECTOR D3.3 Page 111 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

languages, such as Haskell. This creates an automated path from the initial specification down
to the Register-Transfer Level (RTL) of the cryptographic primitive under scrutiny. There is
a great deal of recent work targeting the formal verification of countermeasures against side
channel attacks. The major concern is to provide ways to assess whether an existing specification
does not leak sensitive data.
By construction, functional languages are extremely effective in modelling mathematical concepts,
which allows to reason at a high level of abstractions without ambiguity.
In Deliverable 3.1 [82] we listed the three main goals that we aim at achieving by using functional
languages:

1. High assurance verification of the countermeasure. The methodology must guaran-
tee that masking schemes devised in the specification are effectively implemented correctly
in the RTL.

2. Statistical verification of the countermeasure. The methodology should allow veri-
fying that the statistical properties of a particular primitive do not present side channel
information leakage, even when the implementation followed correctly the specification.
This is a somewhat more important goal that can drive the exploration of new counter-
measures.

3. Specification supported by formal tools. The methodology should allow to specify
an algorithm and have automatic tools to prove that the algorithm is safe from side channel
attacks. The goal is to decide, at development time, whether some formal property holds.

Once such a methodology funded on functional languages has been demonstrated viable in
Deliverable 3.1 [82], we focused on how to take advantage of it, specifically for the third point
listed above.
Our goal is to define some high-level symbolic properties that guarantees the robustness of
a countermeasure in the contest of side channel attacks. When applied in the presented
methodology, this brings two main benefits, compared to the classical workflow based on
simulations:

1. The properties can be directly evaluated on the Haskell specification, without needing to
generate the actual hardware design, synthesize and simulate it.

2. The verification is based on symbolic analysis rather than on statistical analysis over a
large dataset coming from simulations.

Finding such general properties is a challenging task and then we start by limiting the scope and
focusing first on the most used countermeasure, where sensitive data are combined in a Boolean
additive way with random masks (e.g., Boolean masking or threshold implementations [16]).
We introduce a mathematical tool to assess the higher order vulnerability of a hardware
cryptographic circuit. The method empowers the circuit designer to detect if the chosen
countermeasure is effective up to the desired order. Our overarching goal is to promote the
implied statistical reasoning behind the countermeasure into a symbolical one, eventually
extending ordinary computer aided design of integrated circuits.
We summarize here the core results that are detailed in [21].

HECTOR D3.3 Page 112 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

8.2.1 Notation and definitions

Before entering into the description of the properties, we define here the notation used, following
some common standards [54]. We will also recall some concepts that were already previously
introduced in Chapter 5. We use calligraphic letters for sets, e.g. X , and capital letters, e.g.
X, for random variables. A generic but deterministic value in X is denoted by lowercase x. A
vector in Xm is denoted by x = (xi)

m
i=1, where xi ∈ X for all i = 1, . . . ,m. We will denote by

H(x) the Hamming weight of a binary string x.
If A and B are events, the notations P(A) and P(A | B) refer to the probability of A and to
the conditional probability of A given B. Similarly, if X and Y are random variables, E[X]
and E[X | Y] refer to the expectation of X and to the conditional expectation of X given Y
respectively. Finally, the expectation of X given the event that Y takes the deterministic value
y is denoted by E[X | Y = y].
Now we can formally provide the definition of univariate vulnerability in the context of side
channel attacks.
Cryptographic primitives may expose, through a side channel, one or many intermediate
values, which we call visible variables and denote by the letter V because they are actually
processed by the hardware. On the other hand, we call sensitive variables the values that are
deterministic functions of both the master key K and the public input P ; we denote them by
S = S(K,P) [77] [7]. We note that visible variables are not always sensitive themselves.
Information about a visible value V , hence possibly about some sensitive values, can be derived
from observations of a (data dependent) leakage [54]:

L = ψ(V) +N .

Here ψ is a pseudo-Boolean function that represents the way the binary values processed by the
device translate to real side channel measurements (e.g. power consumption). N is a Gaussian
random variable which is commonly used to account for measurement noise.
Under the assumption that V is actually a sensitive value S, one might consider a prediction
function L̂

L̂(k, P) = ψ̂(S(k, P)) ,

where k is any possible value of the key and P is a random plain text. A side channel attack
can thus be mounted by using a distinguisher function

D(L(K, ·), L̂(k, ·))

monotonically related to the statistical dependency between the actual leakage L(K,P) measured
with several random plain texts P , and the leakage model value L̂(k, P) computed using the
same plain texts [54]. The attack consists in the optimization problem that aims to find the key
guess kg maximizing the distinguisher:

argmaxkD(L(K, ·), L̂(k, ·)) .

The previous statements lead to the definition of vulnerability to side channel attacks: a leakage
L is vulnerable (to a side channel attack) if it is statistically dependent on a sensitive value, i.e.

P(L = l | S = s1) 6= P(L = l | S = s2)

for some s1, s2 ∈ S and l ∈ L. If such a vulnerability exists, then a distinguisher D may be used
to mount an attack.

HECTOR D3.3 Page 113 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

To safeguard against the vulnerability, an usual solution is to prevent a sensitive value S to
become visible, by splitting S into d shares V1, . . . , Vd, which are actually processed instead.
This means that

S = V1 ? V2 ? · · · ? Vd ,
where ? is a group operation (usually the bitwise XOR), V2, . . . , Vd are random uniformly
distributed values called masks, and V1 is the masked variable defined in such a way that the
previous equation holds. Thus, each of the shares turns out to be statistically independent of S
and cannot be used alone to mount an attack.
However, this procedure does not remove any possible vulnerability: if the leakage L involves
more than one share, it might still depend on S. This dependence is often revealed by a
combining function C(L) of the leakage: if the expected value of C(L) given S is not constant,
then an attack can still be mounted. See [98] for an in-depth analysis of available combining
functions. In most cases, C is a polynomial of order greater than one, so that the term higher
order attack is commonly adopted: L is vulnerable to an n-th order attack if one of its n-th
conditional moments given S is not constant, i.e. there exists an n-th degree polynomial C(L)
such that

E[C(L) | S = s1] 6= E[C(L) | S = s2]

for some s1, s2 ∈ S.
The concept of vulnerability can be directly extended to the case where the visible variables are
spread over several leakages L = (Li)

l
i=1. If an attack exploits the information given by a vector

of l leakages, we say that such an attack is l-variate. The definition of high order vulnerability
can be generalized to the case of multivariate leakages, by considering an n-th degree polynomial
C(L) : Rl → R in l variables as a combining function, so that the two sides of the inequality are
mixed conditional moments.
Assuming that the leakage model is of the form:

Li = ψi(V) +Ni ,

where ψ1, . . . , ψl are pseudo-Boolean functions and N1, . . . , Nl are Gaussian random variables
independent of each other and independent of any other variable, it is possible to demonstrate
the following theorem: a leakage vector is vulnerable if and only if it is vulnerable to an n-th
order attack for some n (see [21] for the demonstration).
It is worth noting that some different attack approach that is more general (such as MIA [7]),
or more efficient, in practical scenarios may exist. Yet, the previous theorem ensures that if
a vulnerability is present, there must exist a corresponding polynomial combining function.
Accordingly, the analysis performed on such polynomial combining functions is sufficient to
assess the presence or lack of any vulnerability.

8.2.2 A method for detecting higher order vulnerability

We introduce now a method to detect higher-order leakage vulnerability by directly analyzing the
relationship between visible variables and sensitive ones. This could be extremely useful when
the designer of a (hardware) countermeasure wants to make sure that the device does not leak
any information up to a certain attack order without performing a full-blown statistical analysis
at design time. Provided the availability of a high level description of the implementation, as
described in Deliverable D3.1 [82], the following method allows to check for vulnerabilities by
performing a symbolic analysis.
For the sake of exposition, we consider all the sensitive, mask and visible bits in column vectors
S = (Si)

s
i=1 ∈ Fs2, M = (Mi)

m
i=1 ∈ Fm2 and V = (Vi)

v
i=1 ∈ Fv2.

HECTOR D3.3 Page 114 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

We consider components of the leakage vector L = (Li)
l
i=1 of the form

Li =
v∑
j=1

ci,jVj +Ni ∀i = 1, . . . , l ,

where ci,j’s are real coefficients, and N1, . . . , Nl are Gaussian noises independent of each other
and of any other variable.
Given that ci,j can assume arbitrary values for each bit, this model covers:

1. a one to one mapping between each value of the visible variables and each value of the
leakages (e.g. the identity function) — this is the most desirable case for an attacker —;

2. the Hamming weight of some binary string when ci,j is 1 iff the j-th visible bit leaks
through the i-th leakage (and 0 otherwise).

We say that V is vulnerable if it is not independent of S and n-vulnerable if the minimal
vulnerable subset of visible bits in V is of size n. It is worth highlighting that the property of
n-vulnerability for a visible vector can be checked without resorting to statistical experiments. If
the vector of visible variables is n-vulnerable, then any leakage of the form previously considered
is secure against attacks of order lower than n. It becomes then possible to cast the problem of
detecting an n-th order leakage vulnerability to the n-vulnerability of the corresponding visible
variables.
In the case of Boolean-additive masking where visible variables are F2-sums of sensitive variables
and masks, it is possible to devise a symbolic method to detect such a vulnerability. More
formally, we assume that visible variables are related to masks and sensitive variables by the
following matrix expression in F2:

V =
[
B A

]
·
[
M
S

]
= BM ⊕ AS ,

where A = (ai,j) and B = (bi,j) are matrices with entries in F2, of size v×s and v×m respectively.
We will call C =

[
B A

]
the visible variables’ matrix. Thus, Vi turns out to be the F2-sum of

all Mh’s such that bi,h = 1 and all Sj’s such that ai,j = 1:

Vi =
m⊕
h=1

bi,hMh ⊕
s⊕
j=1

ai,jSj ∀i = 1, . . . , v .

We say that a visible vector V ∈ Fv2 satisfies the xor-condition if there exists a constant row
vector ε = (εi)

v
i=1 ∈ Fv2 such that the product

εV =
v⊕
i=1

εiVi

cancels out any mask contribution (i.e. εB = 0) and is a non-constant random variable.
Roughly speaking, the above condition (xor-condition) holds when there is a combination of
visible bits that: i) does not depend on masks and ii) does depend on some sensitive value.
Its importance is highlighted by the following statement, which permits establishing if V is
vulnerable:
Let S ∈ Fs2, M ∈ Fm2 and V = BM ⊕ AS ∈ Fv2 be the sensitive, mask and visible vectors
respectively, being A and B deterministic F2-matrices.

HECTOR D3.3 Page 115 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

1. The xor-condition implies the vulnerability of V .

2. Assuming that S and M are independent and M is uniformly distributed in Fm2 , the
vulnerability of V implies the xor-condition.

Assuming now that all sensitive bits are independent, any F2-sum of them is non-constant,
unless some of them cancel out. In such a case, define an easy-to-verify property of the visible
variables’ matrix. Assume that all the variables S1, . . . , Ss, M1, . . . ,Mm are independent of each
other and M is uniformly distributed in Fm2 . Then, V is n-vulnerable iff

n = min{H(ε) : ε ∈ Fv2, εB = 0, εA 6= 0} .

In other words, one needs to find the row vectors ε that satisfy the (typically under-determined)
F2-linear system εB = 0 but do not satisfy εA = 0: these correspond to all and only the
vulnerable combinations.
The theoretical foundations we described here allow detecting early in the design cycle if a
countermeasure holds up to the required protection order. When paired with the side channel-
aware design methodology introduced in Deliverable 3.1 [82], it allows to quickly validate the
soundness of a specific implementation with side channel protection.

8.3 Towards Side Channel Analysis at Design Time

Following on the motivation to establish sound side channel aware design methodologies,
we present in this section our initial efforts towards building an automated side channel
evaluation framework that can be integrated into Electronic Design Automation (EDA) flows.
Complementary to the the approaches described in D3.1 and extended in Section 8.2 which
build on high-level functional languages, our aim is to employ instantaneous power estimations
obtained at different layers of the hardware design flow in order to provide design-time assessment
of the security of an implementation.

8.3.1 Introduction

A typical silicon evaluation of a cryptographic implementation on an integrated circuit typically
starts with the collection up to millions of real side channel measurements (power consumption
or EM) and continues by running a battery of known attacks, e.g. SB-DPA [70] or CPA [28], as
used for instance in Chapter 6. This is a manual and time consuming process that, in addition,
demands a high degree of expertise. In this context, power estimations rise as an attractive
alternative to assess the security of cryptographic implementations at design time. They have
the potential to capture information leakage through the instantaneous power consumption
already at pre-layout stages. Estimation techniques for typical hardware design constraints are
long-studied and well integrated into EDA tools. This is the case for instance for area and delay,
which are analyzed at various stages in the hardware design flow and optimized according to the
application requirements. Already at high level, e.g. at RTL, hardware designers have access to
rather accurate delay or area models. These are embedded in standard cell libraries, and they are
used both for simulation purposes and by synthesis tools. Models to estimate power consumption
are less accurate but still exist. They are however targeted towards low-power/low-energy design,
a particular constraint for e.g. battery-operated devices.

HECTOR D3.3 Page 116 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

In the remaining of this section, we document our initial efforts towards building a side channel
aware design flow that can be integrated in standard EDA contexts. Although side channel
analyses at design time have been partially tackled in earlier works, we aim to address the
problem in a wholesome and methodical manner. Our efforts are placed along two major lines.

1. We devise a toolchain compatible with modern EDA tool chains for semi-custom ASIC
digital design. Note that it is not our goal to create new synthesis tools, nor circuit
simulators. Instead, we use a set of commercially available tools, enriched with several
custom parsers and utility tools that allow us to perform SCA evaluation using at different
abstraction levels.

2. We verify the soundness of our toolchain by evaluating the SCA security of target hardware
circuits protected by first-order masking. In particular, we analyze sets of estimated
measurements, acquired using several models power consumption, to check for the presence
of leakages.

8.3.2 Side Channel Aware Design Flow

Semi-custom ASIC design flow is otherwise known as standard-cell design flow for it is based
on collections, i.e. libraries of CMOS gates. All evaluations in this flow are based on charac-
terized library models. These are embedded in the different “views” of standard cells, that
are used for synthesis, simulation and optimization at various design stages, as depicted in
Figure 8.7. Quite naturally, these models become more accurate as the flow approaches the
actual layout, i.e. as more details on the circuit are available. If constraints are not met, further
design iterations have to be performed. This is known as design closure. The models used
for timing analysis have been perfected over previous decades. Already at higher abstrac-
tion layers, they provide remarkably good estimations of the final result. In contrast, models
for security are completely lacking. It may be possible to use existing models (for timing or
power), but it is unclear whether they will give upper/lower bounds or indicate trends on security.

Figure 8.7: Traditional, semi-custom ASIC hardware design flow.

Starting with the well-studied semi-custom approach we propose a side channel aware design
flow as depicted in Figure 8.8. Gray rectangles represent design steps, gray ellipses represent

HECTOR D3.3 Page 117 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

simulation stages, and gray rounded rectangles represent different power models used for the
side channel evaluation.

Design Capture

RTL

Logic Synthesis

POS

Physical Synthesis

GLN

PARPAR

Tape-Out

MSM

SCA Evaluation
& Designer Feedback

PTHSPICE

B
ehavio ral

S
tructur al

P
hysica l

Measure

Figure 8.8: Proposed SCA aware design flow.

The main idea is to start trying to estimate the instantaneous power consumption of a design
as early as possible in the design flow, in a manner that can be automated and seamlessly
integrated in the existing EDA tool chains. Therefore, we rely on commercially available tools
in all stages of our flow. Nevertheless, we often use tools in unorthodox manners, so we have to
implement custom parsers and utility tools. Since we base our flow on standard-cell methodology,
our flow and the corresponding toolchain can be used to evaluate any logic style based on
CMOS standard-cell libraries. We perform all simulations and experiments using a free, publicly
available 45nm library from NanGate. An additional advantage is that it provides models for
SPICE simulation, commonly kept as closely guarded secrets by library vendors. Since it can
not be manufactured, this library does not provide us with transistor models. We overcome this
by using Predictive Technology Models (PTM) for the chosen 45nm process node.

For completeness, we list commercial tools we use: Mentor Graphics ModelSim (functional
simulation), Synopsys Design Compiler (logic synthesis), Cadence SOC Encounter (physical
synthesis), Synopsys PrimeTime with PX plugin (STA, and gate-level power simulation),
Synopsys HSPICE (transistor-level simulations).

Models for Power Estimation

The models we investigate provide 3 different performance-precision trade-offs and can be applied
independently, or consecutively, to provide different levels of assurance to the designer.

On the one end is power estimation using HSPICE, analogue simulation inherently fit to handle
instantaneous power consumption, at the cost of immense computational complexity. To allow

HECTOR D3.3 Page 118 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

simulation of complex digital designs, standard-cell libraries are characterized for power con-
sumption. Therefore, event-driven instantaneous power consumption estimation using gate-level
simulators such as PrimeTime (PT) results in waveforms formed by a series of superposed
rectangles. In particular, existence of a rectangle at a certain moment in time is presupposed by
a switching event of the corresponding cell in the functional simulation. For each switching event
“height” and “width” of a rectangle depend on the characterized power and timing parameters of
that cell, respectively.

On the other end, we investigate the use of simple Hamming distance models as often used in
the side channel community, for both hardware and software targets. It is a very crude model,
that works under the assumption that CMOS devices consume majority of power while changing
states. Therefore, each toggle in the circuit results in a unitary contribution in form of a Dirac
pulse at the time when the toggle occurs. In other words, Hamming distance of a transition is
equated with the power consumed for this transition. We refer to it as marching-sticks model
(MSM) for its graphical interpretation and to emphasize the difference from its theoretical use.
For example, the design of side channel countermeasures often relies on making the number
of toggles independent of the processed data, by making arithmetic assumptions about the
behavior of the circuit. Consequently, they use Hamming distance to describe this behavior. Our
approach is not based on theoretical considerations, but on outputs of functional simulations of
implemented designs. In other words, MSM is a depiction of the design under test.

A set of normalized power consumption waveforms estimated using these different models are
presented in Figure 8.9. The figure clearly depicts the switching-event-driven nature of PT
power estimations, as waveforms are perfectly aligned. In detail, every “falling edge” of a blue
rectangle coincides with a single toggle in the circuit. Unfortunately it is more difficult to align
SPICE trace with the remaining two. For exact alignment we would need to reverse engineering
all the analog parameters used in the characterization process. Instead, it is important to notice
that PT estimation follows the trend of the HSPICE one to a great extent, while the number
of MSM toggles only relates to the number of local extremes. Overall, Figure 8.9 depicts the
qualitative loss of information on the power consumption waveform over time once we move
away from HSPICE models.

Estimation Methods

For each of the traditional design stages we introduce one or more side channel evaluation stage.
While these stages may be technically alike to the functional simulations for timing closure (e.g.,
use same tools), the rationale behind them is completely different. In the traditional design flow
designers care about the values in the steady state, i.e. after all transitions have settled. On
the contrary, we focus on the transitional period between states, for that is when the majority
of power is consumed. As a consequence, instead of having to observe 2n states of an n-input
circuit, in order to capture all features of power consumption we need to observe 22n transitions.
For example, it requires 256 observations to exhaust all logical values of an AES S-Box. On the
other hand, 65 536 transitions have to be captured to fully specify circuits behavior in matters
of power consumption over time. We call this type of estimations exhaustive dynamic power
capturing (EDPC). Due to the exponential trends present, fully verifying behavior of larger
circuits (e.g., AES round, or an entire CPU) in a straightforward manner is computationally
unfeasible. Instead, elaborate verification methodologies have been developed (e.g. UVM), to
provide reliable assurances using only a small subset of input vectors. Instead, for now we use
sets of non-repeating random transition for circuits which exceed our computational capabilities.

HECTOR D3.3 Page 119 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

Estimation steps

We start with an RTL-level estimation. At this point no physical information is available
whatsoever. Therefore only MSM estimation can be performed. Within the structural level
we distinguish post-synthesis (POS) and gate-level netlist (GLN) simulations. POS simulation
is performed based on VITAL delays of cells, therefore timing parametrization is limited to
choosing different process corner from the library VITAL models. GLN simulation are performed
based on SDF back-annotation that contains information on characterized wire-load models
and driving power of inputs. Therefore, GLN offers more accuracy, while POS is simpler and
can be performed with less complex tools. Since a design is synthesized, mapped to a library,
all three power models can be used from this point on. Simulating placed and routed (PAR)
designs introduces effects of the layout in form of extracted parasitic elements. Unlike statistical
approach of GLN, PAR simulations entail actual length of interconnect wires.

Automation

We aim to leverage decades of know-how of EDA tool development, therefore we abstain from
creating custom synthesis tools, or simulators. On the other hand, since we often use tools in
an unorthodox fashion, such as the use of SPICE simulations for digital design, we implement
several utilities and parsers.

We start from a Verilog description of a design, input mappings for a test bench, and a
configuration file containing: resource locations (e.g. compiled standard-cell library), as well
as design and simulation parameters (e.g. critical path and process corner). From here we are
able to automatically generate scripts for both logical and physical synthesis. These scripts are
run manually to avoid having to automate error and warning handling, for these tools are quite
complex and many things can go wrong in practice.
On the other hand, we are able to automatically generate Verilog test benches, and SPICE netlists
for measuring power consumption. We have developed algorithms for efficient generations of
EDPC transitions and non-repeating random transitions. Furthermore, we can automatically run

0 100 200 300 400 500 600 700 800 900 1000

Samples

-0.2

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 p
ow

er
 c

on
su

m
pt

io
n MSM

PT
HSPICE

Figure 8.9: Normalized power consumption of a CMOS circuit estimated using MSM, PT, and
HSPICE models.

HECTOR D3.3 Page 120 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

parametrized simulations. Most importantly, we implement parsers for outputs from ModelSim,
PrimeTime, and HSPICE. They allow us to handle simulated power traces in an efficient and
uniform manner, compatible with the way we handle laboratory measurements.

8.3.3 Experimental Results

In this section we present results obtained from the analysis of target circuits representative of
protected cryptographic implementations in hardware. We focus specifically on designs providing
security against univariate attacks. The reason for this choice is twofold. First, there exists
extensive literature on both the design and security analysis of 1st-order masked constructions
that we can use to validate our results. And second, the number of inputs in most designs is
sufficiently small as to analyze all possible transitions with moderate computational capabilities.
Our experiments focus on a simple yet critical element in secure hardware implementations: an
AND gate protected by masking. Early proposals of masked AND gates include the designs
of Trichina [110] and of Ishai, Sahai and Wagner [57]. Mapping of Trichina and ISW designs
to real-world implementations is however not straightforward, as both works make implicit
assumptions about the behaviour of logic gates and/or signal propagations. As pointed out by
Mangard and Schramm in [79], the existence of spurious glitches in hardware circuits leads to
leakages that may completely undermine the security level of the countermeasure. To overcome
this issue Nikova et al. introduce Threshold Implementations (TI) [94], an alternative masking
construction inherently secure against glitches that works by decomposing component functions.
In a more recent work Gross et al. [50] introduce an alternative masked AND design in which
glitches are prevented by the insertion of a register stage.

Trichina AND gate. Our first set of experiments focuses on the masked AND gate design
due to Trichina [110] shown in Figure 8.10 (left). Input and output variables are split into
2 shares such that a = a1 ⊕ a2, b = b1 ⊕ b2 and c = c1 ⊕ c2. The design consumes one bit
of randomness z. We have generated simulations for all possible input transitions, leading to
25 × 25 = 1 024 measurements. Figure 8.10 (right) shows a selection of measurements obtained
with different tools and models (vertically shifted and scaled for illustrative purposes).

a1

b1

a1

b2

b1

a2

a2

b2

z c1

c2

100 200 300 400 500 600 700 800 900 1000
Samples

MSM−POS
PT−POS
HSPICE−POS

Figure 8.10: Trichina AND gate design (left). Overview of exemplary measurements from our
toolchain (right).

Analyzing whether the implementation is secure against first-order attacks can be done by
computing the difference of means of measurement sets partitioned according to the value of
sensitive variables. In what follows the output c determines the splitting into sets. If the

HECTOR D3.3 Page 121 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

implementation is secure, e.g. it does not exhibit first-order leakage, then one expects the
differential trace to contain only zeros. This is shown in Figure 8.11 (left), which corresponds to
the analysis at behavioural level. In contrast, the presence of first-order leakage is visualized
by the presence of peaks in the differential trace. This case is shown in Figure 8.11 (right),
corresponding to the analysis at structural level. Significant differences can be observed along
the samples where signals propagate through the circuit. The result is consistent with the
observations made in [79] related to the security of masked gates to hardware glitches, and serves
to validate that our tools can correctly capture information leakage through IPC estimations at
early design stages.

100 200 300 400 500 600 700 800 900 1000
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

D
iff

er
en

ce
 o

f m
ea

ns

Samples
100 200 300 400 500 600 700 800 900 1000

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

D
iff

er
en

ce
 o

f m
ea

ns

Samples

Figure 8.11: Differential trace using RTL simulations (left). Differential trace using MSM-POS
simulations (right).

DOM-indep AND gate. Our next set of experiments focuses on the first-order DOM-indep
multiplier from [50] depicted in Figure 8.12 (left). The design has some similarities to the
Trichina AND gate: it uses two shares for the input/output variables, it consumes one bit of
randomness, it demands 4 AND and 4 XOR logic gates, and guarantees first-order security. The
main difference between both designs is the register stage inserted between logic gates in order
to prevent leakage of sensitive information due to glitches. We show in Figure 8.12 (right) a set
of representative simulations, which in this case stretch over two clock cycles.

a1

b1

a1

b2

b1

a2

a2

b2

z

c2

c1

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Samples

MSM−POS
PT−POS
HSPICE−POS

Figure 8.12: DOM-indep AND gate design (left). Overview of exemplary measurements from
our toolchain (right).

HECTOR D3.3 Page 122 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

The differential traces obtained when analyzing all 1 024 measurements (once again partitioned
according to c) are zero both at behavioural and structural levels, thus confirming that the
design is inherently resilient to glitches. For the purposes of validation, we evaluate the design for
cases that violate certain design conditions and, consequently, are expected to exhibit first-order
leakage. Figure 8.13 (left) shows the differential trace when we analyze only a subset of 512
measurements conditioned to z = 0. Removing the mask has no effects on the correctness of
the computation, but it leads to the appearance of peaks in the differential trace during the
second clock cycle. A second example is shown in Figure 8.13 (right). Here we analyze a subset
of 256 measurements corresponding to the case where inputs are dependent, i.e. constrained to
a1 = b1 and a2 = b2. This selection breaks one of the requirements of the DOM-indep multiplier,
namely, to ensure that input shares are independent of each other (an alternative DOM-dep
multiplier should be used in this case, see [50]). The peaks in the first cycle of the differential
trace are due to the computations AND(a1, b2) and AND(a2, b1), which combine information
from both shares and reveal information about the sensitive values.

0 500 1000 1500 2000

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

D
iff

er
en

ce
 o

f m
ea

ns

Samples
200 400 600 800 1000 1200 1400 1600 1800 2000

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5
D

iff
er

en
ce

 o
f m

ea
ns

Samples

Figure 8.13: Differential trace using MSM-POS simulations with mask off (left). Differential
trace using MSM-POS simulations with dependent inputs (right).

TI AND gate. Our last experiments targeting an AND gate focus on the first-order secure
TI design due to Bilgin et al. [17] and shown in Figure 8.14. The design requires three shares
per variable and consumes one random bit z, which acts internally as a virtual share. Security
against glitches is guaranteed by TI schemes through the non-completeness rule, i.e. by ensuring
that each component function is independent of at least one input share per sensitive variable.
The total number of measurements for the TI AND gate increases with respect to previous
designs, and demands the generation of 27 × 27 = 16 384 measurements.
Again as expected, the analyses at behavioural and structural level give no indications of
first-order leakage in the design. Additionally, and in contrast to the DOM-indep AND gate, no
signs of leakage appear even when inputs are dependent. Focusing once again on a corner case,
we plot in Figure 8.15 (left) the differential trace obtained when using the TI design with 2
instead of 3 inputs shares, i.e. by setting a3 = b3 = 0, which naturally exhibits first-order leakage.
In Figure 8.15 (right) we plot the differential trace when checking for second-order leakage. This
test requires a pre-processing step in which expanded traces are generated by combining all
samples, i.e. each original measurement x of n samples leads to a new measurement x′ of size(
n
2

)
+ n samples. To reduce the computational complexity of the test, we reduce the size of the

original traces from 1 000 to 250 samples, i.e. covering only the time window with circuit activity,
leading to extended traces of 31 375 samples. Results shown in the plot are when combining

HECTOR D3.3 Page 123 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

Figure 8.14: TI 3-share AND gate design.

samples using the product function [31], but similar results are obtained when using the absolute
difference function [87].

100 200 300 400 500 600 700 800 900 1000
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

D
iff

er
en

ce
 o

f m
ea

ns

Samples
0.5 1 1.5 2 2.5 3

x 10
4

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

D
iff

er
en

ce
 o

f m
ea

ns

Samples

Figure 8.15: Differential trace using MSM-POS simulations without third share (left). Differential
trace using pre-processed MSM-POS simulations to test for second-order leakage (right).

8.3.4 Conclusions

As illustrated by our experiments, the detection of side channel leakages in the early, pre-silicon
design stages is possible. We have shown that this can even be achieved by leveraging on existing
tools and using very simple and efficient estimation models such as MSM. From here, we plan
to optimize our toolchain and start running experiments on the larger scale. In a second stage,
we plan to further investigate the influence of different simulation and extraction parameters,
and their correspondence to side channel security of manufactured chips.

HECTOR D3.3 Page 124 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

Chapter 9

Conclusions

Robust cryptographic implementations and countermeasures against physical attacks both rely
on randomization, and hence need random numbers. Ideally, these are “perfectly” random,
having maximum entropy. Unfortunately, this security assumption does not necessarily hold in
practice. Therefore, one of the main research questions investigated in the HECTOR project is
to study the security degradation of cryptographic primitives and countermeasures against side
channel attacks in the presence of non-ideal random numbers. This deliverable presented the
scientific outcomes of tasks T3.1 and T3.2 in WP3.
The first part of this deliverable focused on the cryptanalytic techniques that capture the
mathematical strength of a cryptographic primitive with respect to its keying material: related-
key attacks, differential cryptanalysis based on related tweakeys, and known-key attacks. These
techniques have been applied to Rijndael-160/160 and Rijndael-192/192, iFeed, MANTIS-5,
and Simpira v1. These results improved the best-known cryptanalytic attacks on these ciphers
and/or invalidated security claims made by the designers. Although each of these research
results stands on its own, it shows that the lack of independent keying material (e.g. subkeys,
round keys, etc.) could strongly reduce the cryptographic strength of an algorithm. Therefore,
designers of cryptographic primitives should not limit the security evaluation to linear and
differential cryptanalysis, but also consider the related and known-key setting to fully assess the
mathematical strength of their algorithms. In the same line of work, the Weak Cipher Model
(WCM) has been presented. This new security model allowed us to formally analyze the effect
of known-key attacks on block cipher-based and permutation-based hash functions. We have
applied this model to the PGV compression functions, as well as to the Grøstl (based on two
permutations) and Shrimpton-Stam (based on three permutations) compression functions, and
have shown that these designs do not seriously succumb to any differential known-key attack
known to date.
Given the importance of high-quality random numbers for cryptographic primitives and coun-
termeasures against physical attacks, algorithmic and cryptographic post-processing is needed
to process the raw output of TRNGs and PUFs. We have explained that this design ap-
proach might reduce or even nullify the efficiency gain obtained by applying (ultra-) lightweight
cryptography. Therefore, we have explored the research idea of reducing the complexity by
integrating the cryptographic post-processing of TRNGs and PUFs with lightweight cryptogra-
phy. As an illustration of this concept, we have presented a sponge(duplex)-like construction,
based on the Motorist-layer construction, that allows to combine cryptographic hashing and
encryption/authenticated-encryption within a single primitive. This sponge-construction can
then directly handle the non-ideal, raw input originating from TRNGs or PUFs.
The third part of this deliverable has investigated the effects of non-ideal random numbers on

HECTOR D3.3 Page 125 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

the efficacy of side channel countermeasures. Here, we have proposed to use the number of
measurements required for an attack to succeed as metric to quantify the degradation of different
mitigation strategies. Our analysis based on simulations showed that monobit biases, can
significantly lower the security of countermeasures. In contrast, other type of non-idealities such
as failure to tests T3, T5 and T8 from AIS 31, appear to have less impact on the security of the
implementation. A natural interpretation of these results is that, when it comes to side channel
protection, certain on-the-fly tests should be prioritized over others. In this respect, it is also
worth stressing that our analyses with data from the TRNG under attack with post-processing
module included, yield no apparent security degradation, due to the generated random bits
being more “ideal”.
The last part of this deliverable reported on the novel research results of task T3.4 of the HECTOR
project, which have not yet been described in deliverable D3.1. Three main contributions have
been presented: (1) a practical evaluation of the new Unified Masking Approach (UMA) by
implementing this method for authenticated cipher Ascon, (2) a methodology based on the
functional specifications of cryptographic circuits in high-level functional languages for symbolic
analysis of higher-order side channel countermeasure, and (3) the first results towards building
a side-channel aware design flow that can be integrated in standard EDA contexts.
The research results presented in this deliverable should be considered as far-out exploration,
targeting a Technology Readiness Level (TRL) of 2-3. Therefore, compliance to existing
standards and short-term commercial exploitation were not the driving factors of these research
activities. Nevertheless, the research results presented here provide useful feedback for the other
activities in the HECTOR project, in particular work packages WP2 and WP4. This also has
led to the use of a single sponge construction that combines several cryptographic operations -
including post-processing - into demonstrators 2 and 3 of WP4.

HECTOR D3.3 Page 126 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

HECTOR D3.3 Page 127 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

Chapter 10

List of Abbreviations

AEAD Authenticated Encryption

AES Advanced Encryption Standard

AK AddRoundKey (AES/Rijndael transformation)

ASIC Application-Specific Integrated Circuit

AWCM Abortable Weak Cipher Model

BC Block Cipher

CAESAR Competition for Authenticated Encryption

CMOS Complementary Metal Oxide Semiconductor

CPA Correlation Power Analysis

CPU Central Processing Unit

DEMA Differential Electro-Magnetic Analysis

DES Data Encryption Standard

DOM Domain Oriented Masking

DPA Differential Power Analysis

DRNG Deterministic random number generator

EC European Commission

ECC Error Correcting Code

EDA Electronic Design Automation

EDPC Exhaustive Dynamic Power capturing

FPGA Field Programmable Gate Array

GF Galois Field

GLN Gate-Level Netlist

ICM Ideal Cipher Model

IPM Ideal Permutation Model

MAC Message Authentication Code

MC MixColumns (AES/Rijndael transformation)

MSM Marching-Sticks Model

PAR Placed-and-Routed

HECTOR D3.3 Page 128 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

PGV Preneel, Govaerts and Vandewalle compression functions

PMAC Parallelizable MAC

PMN Public Message Number

POS Post-Synthesis

PT PrimeTime

PUF Physically Uncloneable Function

RNG Random Number Generator

RTL Register Transfer Level

SB SubBytes (AES/Rijndael transformation)

SB-DPA Single-bit DPA

SR ShiftRows (AES/Rijndael transformation)

TBC Tweakable Block Cipher

TOE Target of Evaluation

TRL Technology Readiness Level

TRNG True Random Number Generator

UMA Unified Masking Approach

XOR Exclusive-OR

WCM Weak Cipher Model

WP Work Package

HECTOR D3.3 Page 129 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

Bibliography

[1] Dakshi Agrawal, Josyula R. Rao, and Pankaj Rohatgi. Multi-channel attacks. In Colin D.
Walter, Çetin Kaya Koç, and Christof Paar, editors, Cryptographic Hardware and Embedded
Systems - CHES 2003, volume 2779 of Lecture Notes in Computer Science, pages 2–16.
Springer, 2003.

[2] Elena Andreeva, Andrey Bogdanov, Atul Luykx, Bart Mennink, Nicky Mouha, and Kan
Yasuda. How to Securely Release Unverified Plaintext in Authenticated Encryption. In
Palash Sarkar and Tetsu Iwata, editors, ASIACRYPT 2014, Part I, volume 8873 of Lecture
Notes in Computer Science, pages 105–125. Springer, 2014.

[3] Elena Andreeva, Andrey Bogdanov, and Bart Mennink. Towards understanding the
known-key security of block ciphers. In Fast Software Encryption 2013, volume 8424 of
LNCS, pages 348–366. Springer, Heidelberg, 2013.

[4] Paul Baecher, Pooya Farshim, Marc Fischlin, and Martijn Stam. Ideal-cipher
(ir)reducibility for blockcipher-based hash functions. In Advances in Cryptology - EURO-
CRYPT 2013, volume 7881 of LNCS, pages 426–443. Springer, Heidelberg, 2013.

[5] Josep Balasch, Sebastian Faust, and Benedikt Gierlichs. Inner product masking revisited.
In Elisabeth Oswald and Marc Fischlin, editors, Advances in Cryptology - EUROCRYPT
2015, volume 9056 of Lecture Notes in Computer Science, pages 486–510. Springer, 2015.

[6] Subhadeep Banik, Andrey Bogdanov, Takanori Isobe, Kyoji Shibutani, Harunaga Hiwatari,
Toru Akishita, and Francesco Regazzoni. Midori: A block cipher for low energy. In Tetsu
Iwata and Jung Hee Cheon, editors, ASIACRYPT 2015, volume 9453 of LNCS, pages
411–436. Springer, 2015.

[7] Lejla Batina, Benedikt Gierlichs, Emmanuel Prouff, Matthieu Rivain, François-Xavier
Standaert, and Nicolas Veyrat-Charvillon. Mutual information analysis: a comprehensive
study. Journal of Cryptology, 24(2):269–291, 2010.

[8] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi, Thomas
Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. The SKINNY family of block
ciphers and its low-latency variant MANTIS. In Matthew Robshaw and Jonathan Katz,
editors, CRYPTO 2016, volume 9815 of LNCS, pages 123–153. Springer, 2016.

[9] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Caesar submission:
Keyak v2. http://keyak.noekeon.org/, September 2016.

[10] Guido Bertoni, Joan Daemen, Michal Peeters, and Gilles Van Assche. Duplexing the
sponge: Single-pass authenticated encryption and other applications. In In Selected Areas
in Cryptography, pages 320–337.

HECTOR D3.3 Page 130 of 139

http://keyak.noekeon.org/

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

[11] Eli Biham and Orr Dunkelman. The SHAvite-3 hash function. Submission to NIST, 2009.

[12] Eli Biham, Orr Dunkelman, and Nathan Keller. The Rectangle Attack - Rectangling the
Serpent. In Birgit Pfitzmann, editor, EUROCRYPT, volume 2045 of Lecture Notes in
Computer Science, pages 340–357. Springer, 2001.

[13] Eli Biham, Orr Dunkelman, and Nathan Keller. A Related-Key Rectangle Attack on the
Full KASUMI. In Bimal K. Roy, editor, ASIACRYPT, volume 3788 of Lecture Notes in
Computer Science, pages 443–461. Springer, 2005.

[14] Eli Biham, Orr Dunkelman, and Nathan Keller. New Combined Attacks on Block Ciphers.
In Henri Gilbert and Helena Handschuh, editors, FSE, volume 3557 of LNCS, pages
126–144. Springer, 2005.

[15] Eli Biham, Orr Dunkelman, and Nathan Keller. Related-Key Boomerang and Rectangle
Attacks. In Ronald Cramer, editor, EUROCRYPT, volume 3494 of LNCS, pages 507–525.
Springer, 2005.

[16] Begül Bilgin, Benedikt Gierlichs, Svetla Nikova, Ventzislav Nikov, and Vincent Rijmen.
Trade-Offs for Threshold Implementations Illustrated on AES. IEEE Trans. on CAD of
Integrated Circuits and Systems, 34(7):1188–1200, 2015.

[17] Begül Bilgin, Svetla Nikova, Ventzislav Nikov, Vincent Rijmen, and Georg Stütz. Threshold
Implementations of All 3 x 3 and 4 x 4 S-Boxes. In Emmanuel Prouff and Patrick Schaumont,
editors, Cryptographic Hardware and Embedded Systems - CHES 2012, volume 7428 of
Lecture Notes in Computer Science, pages 76–91. Springer, 2012.

[18] Alex Biryukov and Dmitry Khovratovich. Related-Key Cryptanalysis of the Full AES-192
and AES-256. In Mitsuru Matsui, editor, ASIACRYPT, volume 5912 of Lecture Notes in
Computer Science, pages 1–18. Springer, 2009.

[19] Alex Biryukov, Dmitry Khovratovich, and Ivica Nikolić. Distinguisher and related-key
attack on the full AES-256. In Advances in Cryptology - CRYPTO 2009, volume 5677 of
LNCS, pages 231–249. Springer, Heidelberg, 2009.

[20] Alex Biryukov and Ivica Nikolic. Automatic Search for Related-Key Differential Character-
istics in Byte-Oriented Block Ciphers: Application to AES, Camellia, Khazad and Others.
In Henri Gilbert, editor, EUROCRYPT, volume 6110 of Lecture Notes in Computer
Science, pages 322–344. Springer, 2010.

[21] Elia Bisi, Filippo Melzani, and Vittorio Zaccaria. Symbolic analysis of higher-order side
channel countermeasures. IEEE Trans. Computers, 66(6):1099–1105, 2017.

[22] John Black, Martin Cochran, and Thomas Shrimpton. On the impossibility of highly-
efficient blockcipher-based hash functions. In Advances in Cryptology - EUROCRYPT
2005, volume 3494 of LNCS, pages 526–541. Springer, Heidelberg, 2005.

[23] John Black, Phillip Rogaway, and Thomas Shrimpton. Black-box analysis of the block-
cipher-based hash-function constructions from PGV. In Advances in Cryptology - CRYPTO
2002, volume 2442 of LNCS, pages 320–335. Springer, Heidelberg, 2002.

[24] John Black, Phillip Rogaway, Thomas Shrimpton, and Martijn Stam. An analysis of the
blockcipher-based hash functions from PGV. Journal of Cryptology, 23(4):519–545, 2010.

HECTOR D3.3 Page 131 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

[25] Julia Borghoff, Anne Canteaut, Tim Güneysu, Elif Bilge Kavun, Miroslav Knezevic,
Lars R. Knudsen, Gregor Leander, Ventzislav Nikov, Christof Paar, Christian Rechberger,
Peter Rombouts, Søren S. Thomsen, and Tolga Yalçin. PRINCE – A low-latency block
cipher for pervasive computing applications. In Xiaoyun Wang and Kazue Sako, editors,
ASIACRYPT 2012, volume 7658 of LNCS, pages 208–225. Springer, 2012.

[26] Charles Bouillaguet, Pierre-Alain Fouque, and Gaëtan Leurent. Security analysis of SIMD.
In Selected Areas in Cryptography 2010, volume 6544 of LNCS, pages 351–368. Springer,
Heidelberg, 2011.

[27] Emmanuel Bresson, Anne Canteaut, Benôıt Chevallier-Mames, Christophe Clavier, Thomas
Fuhr, Aline Gouget, Thomas Icart, Jean-François Misarsky, Mar̀ıa Naya-Plasencia, Pascal
Paillier, Thomas Pornin, Jean-René Reinhard, Céline Thuillet, and Marion Videau. Indif-
ferentiability with distinguishers: Why Shabal does not require ideal ciphers. Cryptology
ePrint Archive, Report 2009/199, 2009.

[28] Eric Brier, Christophe Clavier, and Francis Olivier. Correlation power analysis with
a leakage model. In Marc Joye and Jean-Jacques Quisquater, editors, Cryptographic
Hardware and Embedded Systems - CHES 2004, volume 3156 of Lecture Notes in Computer
Science, pages 16–29. Springer, 2004.

[29] Florent Chabaud and Antoine Joux. Differential Collisions in SHA-0. In Hugo Krawczyk,
editor, CRYPTO, volume 1462 of Lecture Notes in Computer Science, pages 56–71.
Springer, 1998.

[30] Avik Chakraborti, Nilanjan Datta, Kazuhiko Minematsu, and Sourav Sen Gupta. Forgery
on iFeed[AES] in RUP and Nonce-Misuse Settings, 2015. CAESAR mailing list.

[31] Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi. Towards Sound
Approaches to Counteract Power-Analysis Attacks. In Michael J. Wiener, editor, Advances
in Cryptology - CRYPTO ’99, volume 1666 of Lecture Notes in Computer Science, pages
398–412. Springer, 1999.

[32] Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES - The Advanced
Encryption Standard. Springer, 2002.

[33] W. Diffie and M. Hellman. New Directions in Cryptography. In IEEE Transactions on
Information Theory, pages 644–654. IEEE, 1976.

[34] Christoph Dobraunig, Maria Eichlseder, Daniel Kales, and Florian Mendel. Practical key-
recovery attack on MANTIS5. IACR Transactions on Symmetric Cryptology, 2016(2):248–
260, 2016.

[35] Christoph Dobraunig, Maria Eichlseder, and Florian Mendel. Cryptanalysis of Simpira
v1. In Roberto Avanzi and Howard Heys, editors, Selected Areas in Cryptography – SAC
2016, LNCS. Springer, 2016. To appear.

[36] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer. Ascon v1.2.
Submission to the CAESAR competition: http://competitions.cr.yp.to/round3/

asconv12.pdf, 2016.

HECTOR D3.3 Page 132 of 139

http://competitions.cr.yp.to/round3/asconv12.pdf
http://competitions.cr.yp.to/round3/asconv12.pdf

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

[37] Julien Doget, Emmanuel Prouff, Matthieu Rivain, and François-Xavier Standaert. Univari-
ate side channel attacks and leakage modeling. J. Cryptographic Engineering, 1(2):123–144,
2011.

[38] Orr Dunkelman, Nathan Keller, and Adi Shamir. A Practical-Time Related-Key Attack
on the KASUMI Cryptosystem Used in GSM and 3G Telephony. In Tal Rabin, editor,
CRYPTO, volume 6223 of Lecture Notes in Computer Science, pages 393–410. Springer,
2010.

[39] Lei Duo and Chao Li. Improved collision and preimage resistance bounds on PGV schemes.
Cryptology ePrint Archive, Report 2006/462, 2006.

[40] Niels Ferguson, John Kelsey, Stefan Lucks, Bruce Schneier, Michael Stay, David Wagner,
and Doug Whiting. Improved Cryptanalysis of Rijndael. In Schneier [104], pages 213–230.

[41] Viktor Fischer and Patrick Haddad. Circuits and Systems for Security and Privacy,
chapter 7 – Random Number Generators for Cryptography, pages 245–286. CRC Press,
2016.

[42] Pierre-Alain Fouque, Jacques Stern, and Sébastien Zimmer. Cryptanalysis of tweaked
versions of SMASH and reparation. In Selected Areas in Cryptography 2008, volume 5381
of LNCS, pages 136–150. Springer, Heidelberg, 2009.

[43] Samuel Galice and Marine Minier. Improving Integral Attacks Against Rijndael-256 Up
to 9 Rounds. In Serge Vaudenay, editor, AFRICACRYPT, volume 5023 of Lecture Notes
in Computer Science, pages 1–15. Springer, 2008.

[44] Karine Gandolfi, Christophe Mourtel, and Francis Olivier. Electromagnetic analysis:
Concrete results. In Çetin Kaya Koç, David Naccache, and Christof Paar, editors,
Cryptographic Hardware and Embedded Systems - CHES 2001, volume 2162 of Lecture
Notes in Computer Science, pages 251–261. Springer, 2001.

[45] Praveen Gauravaram, Lars R. Knudsen, Krystian Matusiewicz, Florian Mendel, Christian
Rechberger, Martin Schläffer, and Søren Thomsen. Grøstl – a SHA-3 candidate, 2011.
Submission to NIST’s SHA-3 competition.

[46] Gilbert Goodwill, Benjamin Jun, Josh Jaffe, and Pankaj Rohatgi. A Testing Methodology
for Side-Channel Resistance Validation. In NIST Non-Invasive Attack Testing Workshop,
2011.

[47] Louis Goubin and Jacques Patarin. DES and Differential Power Analysis (The ”Duplication”
Method). In Çetin Kaya Koç and Christof Paar, editors, Cryptographic Hardware and
Embedded Systems - CHES’99, volume 1717 of Lecture Notes in Computer Science, pages
158–172. Springer, 1999.

[48] Hannes Gross. DOM and UMA Masked Hardware Implementations of Ascon. https:

//github.com/hgrosz/ascon_dom, 2017.

[49] Hannes Gross and Stefan Mangard. Reconciling d+1 masking in hardware and software.
In Cryptographic Hardware and Embedded Systems – CHES 2017, 2017. To appear.

HECTOR D3.3 Page 133 of 139

https://github.com/hgrosz/ascon_dom
https://github.com/hgrosz/ascon_dom

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

[50] Hannes Gross, Stefan Mangard, and Thomas Korak. Domain-Oriented Masking: Compact
Masked Hardware Implementations with Arbitrary Protection Order. In Proceedings of
the 2016 ACM Workshop on Theory of Implementation Security, TIS ’16, pages 3–3, New
York, NY, USA, 2016. ACM.

[51] Hannes Groß, Erich Wenger, Christoph Dobraunig, and Christoph Ehrenhofer. Suit up! -
Made-to-Measure Hardware Implementations of ASCON. In DSD 2015, Madeira, Portugal,
August 26-28, 2015, pages 645–652, 2015.

[52] Shay Gueron and Nicky Mouha. Simpira: A family of efficient permutations using the
AES round function. Cryptology ePrint Archive, Report 2016/122, 2016.

[53] Shay Gueron and Nicky Mouha. Simpira v2: A family of efficient permutations using
the AES round function. In Jung Hee Cheon and Tsuyoshi Takagi, editors, Advances in
Cryptology – ASIACRYPT 2016, volume 10031 of LNCS. Springer, 2016. To appear.

[54] Suvadeep Hajra and Debdeep Mukhopadhyay. Reaching the limit of nonprofiling DPA.
IEEE Trans. on CAD of Integrated Circuits and Systems, 34(6):915–927, 2015.

[55] Christoph Herbst, Elisabeth Oswald, and Stefan Mangard. An AES smart card implemen-
tation resistant to power analysis attacks. In Jianying Zhou, Moti Yung, and Feng Bao,
editors, Applied Cryptography and Network Security - ACNS 2006, volume 3989 of Lecture
Notes in Computer Science, pages 239–252. Springer, 2006.

[56] Thomas Holenstein, Robin Künzler, and Stefano Tessaro. The equivalence of the random
oracle model and the ideal cipher model, revisited. In Proc. ACM Symposium on Theory
of Computing 2011, pages 89–98, New York, 2011. ACM.

[57] Yuval Ishai, Amit Sahai, and David Wagner. Private circuits: Securing hardware against
probing attacks. In Dan Boneh, editor, Advances in Cryptology - CRYPTO 2003, volume
2729 of Lecture Notes in Computer Science, pages 463–481. Springer, 2003.

[58] Jérémy Jean. Cryptanalysis of Haraka. Cryptology ePrint Archive, Report 2016/396,
2016.

[59] Jérémy Jean and Ivica Nikolic. Efficient design strategies based on the AES round function.
In Thomas Peyrin, editor, Fast Software Encryption – FSE 2016, volume 9783 of LNCS,
pages 334–353. Springer, 2016.

[60] Jérémy Jean, Ivica Nikolić, and Thomas Peyrin. Tweaks and keys for block ciphers: The
TWEAKEY framework. In Palash Sarkar and Tetsu Iwata, editors, ASIACRYPT 2014,
volume 8874 of LNCS, pages 274–288. Springer, 2014.

[61] Jérémy Jean, Ivica Nikolić, Yu Sasaki, and Lei Wang. Practical cryptanalysis of PAES. In
Antoine Joux and Amr M. Youssef, editors, Selected Areas in Cryptography – SAC 2014,
volume 8781 of LNCS, pages 228–242. Springer, 2014.

[62] Jérémy Jean, Ivica Nikolić, Yu Sasaki, and Lei Wang. Practical forgeries and distinguishers
against PAES. IEICE Transactions, 99-A(1):39–48, 2016.

[63] Liam Keliher and Jiayuan Sui. Exact maximum expected differential and linear probability
for two-round Advanced Encryption Standard. IET IFS, 1(2):53–57, 2007.

HECTOR D3.3 Page 134 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

[64] John Kelsey, Tadayoshi Kohno, and Bruce Schneier. Amplified Boomerang Attacks Against
Reduced-Round MARS and Serpent. In Schneier [104], pages 75–93.

[65] W. Killmann and W. Schindler. AIS 31: Functionality classes and evaluation methodology
for true (physical) random number generators (version 3.1). BSI, Germany. [online]
Available from https://www.bsi.bund.de, 2001.

[66] W. Killmann and W. Schindler. A proposal for: Functionality classes for random number
generators, Version 2.0. BSI, Germany. [online] Available from https://www.bsi.bund.de,
2011.

[67] Jongsung Kim, Seokhie Hong, Bart Preneel, Eli Biham, Orr Dunkelman, and Nathan Keller.
Related-Key Boomerang and Rectangle Attacks: Theory and Experimental Analysis. IEEE
Transactions on Information Theory, 58(7):4948–4966, 2012.

[68] Lars Knudsen and Vincent Rijmen. Known-key distinguishers for some block ciphers.
In Advances in Cryptology - ASIACRYPT 2007, volume 4833 of LNCS, pages 315–324.
Springer, Heidelberg, 2007.

[69] Paul C. Kocher. Timing attacks on implementations of diffie-hellman, rsa, dss, and other
systems. In Neal Koblitz, editor, Advances in Cryptology - CRYPTO ’96, volume 1109 of
Lecture Notes in Computer Science, pages 104–113. Springer, 1996.

[70] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In Michael J.
Wiener, editor, Advances in Cryptology - CRYPTO ’99, volume 1666 of Lecture Notes in
Computer Science, pages 388–397. Springer, 1999.

[71] Stefan Kölbl, Martin M. Lauridsen, Florian Mendel, and Christian Rechberger. Haraka –
efficient short-input hashing for post-quantum applications. Cryptology ePrint Archive,
Report 2016/098, 2016.

[72] Leslie Lamport. Constructing digital signatures from a one-way function. Technical Report
SRI-CSL-98, SRI International Computer Science Laboratory, 1979.

[73] Thanh-Ha Le, Jessy Clédière, Cécile Canovas, Bruno Robisson, Christine Servière, and
Jean-Louis Lacoume. A proposition for correlation power analysis enhancement. In Louis
Goubin and Mitsuru Matsui, editors, Cryptographic Hardware and Embedded Systems -
CHES 2006, volume 4249 of Lecture Notes in Computer Science, pages 174–186. Springer,
2006.

[74] Yanjun Li and Wenling Wu. Improved Integral Attacks on Rijndael. Journal of Information
Science and Engineering, 27(6):2031–2045, 2011.

[75] Moses Liskov. Constructing an ideal hash function from weak ideal compression functions.
In Selected Areas in Cryptography 2006, volume 4356 of LNCS, pages 358–375. Springer,
Heidelberg, 2007.

[76] Moses Liskov, Ronald L. Rivest, and David Wagner. Tweakable block ciphers. In Moti
Yung, editor, Advances in Cryptology – CRYPTO 2002, volume 2442 of LNCS, pages
31–46. Springer, 2002.

HECTOR D3.3 Page 135 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

[77] Victor Lomné, Emmanuel Prouff, Matthieu Rivain, Thomas Roche, and Adrian Thillard.
How to estimate the success rate of higher-order side-channel attacks. In Cryptographic
Hardware and Embedded Systems - CHES 2014, pages 35–54. Springer, 2014.

[78] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power Analysis Attacks - Revealing
the Secrets of Smart Cards. Springer, 2007.

[79] Stefan Mangard and Kai Schramm. Pinpointing the Side-Channel Leakage of Masked AES
Hardware Implementations. In Louis Goubin and Mitsuru Matsui, editors, Cryptographic
Hardware and Embedded Systems - CHES 2006, volume 4249 of Lecture Notes in Computer
Science, pages 76–90. Springer, 2006.

[80] Stephen Matyas, Carl Meyer, and Jonathan Oseas. Generating strong one-way functions
with cryptographic algorithm. IBM Techn. Disclosure Bull., 27(10A):5658–5659, 1985.

[81] Ueli Maurer, Renato Renner, and Clemens Holenstein. Indifferentiability, impossibility
results on reductions, and applications to the random oracle methodology. In Theory of
Cryptography Conference 2004, volume 2951 of LNCS, pages 21–39. Springer, Heidelberg,
2004.

[82] Filippo Melzani, Josep Balasch, Danilo Šijačić, Guido Bertoni, Ruggero Susella, Maria
Eichelseder, and Thomas Korak. Hector deliverable 3.1 – report on the efficient implementa-
tions of crypto algorithms and building blocks and on cost and benefits of countermeasures
against physical attacks. https://hector-project.eu/publications-deliverables/

deliverables, 2016.

[83] Bart Mennink and Bart Preneel. Hash functions based on three permutations: A generic
security analysis. In Advances in Cryptology - CRYPTO 2012, volume 7417 of LNCS,
pages 330–347. Springer, Heidelberg, 2012.

[84] Bart Mennink and Bart Preneel. On the impact of known-key attacks on hash functions. In
Tetsu Iwata and Jung Hee Cheon, editors, Advances in Cryptology - ASIACRYPT 2015 -
21st International Conference on the Theory and Application of Cryptology and Information
Security, Auckland, New Zealand, November 29 - December 3, 2015, Proceedings, Part II,
volume 9453 of Lecture Notes in Computer Science, pages 59–84. Springer, 2015.

[85] Bart Mennink and Bart Preneel. Efficient parallelizable hashing using small non-
compressing primitives. International Journal of Information Security, 15(3):285–300,
2016.

[86] Thomas S. Messerges. Power Analysis Attacks and Countermeasures for Cryptographic
Algorithms. PhD thesis, University of Illinois, 2000.

[87] Thomas S. Messerges. Using Second-Order Power Analysis to Attack DPA Resistant
Software. In Çetin Kaya Koç and Christof Paar, editors, Cryptographic Hardware and
Embedded Systems - CHES 2000, volume 1965 of Lecture Notes in Computer Science,
pages 238–251. Springer, 2000.

[88] Shoji Miyaguchi, Kazuo Ohta, and Masahiko Iwata. Confirmation that some hash functions
are not collision free. In Advances in Cryptology - EUROCRYPT ’90, volume 473 of LNCS,
pages 326–343. Springer, Heidelberg, 1990.

HECTOR D3.3 Page 136 of 139

https://hector-project.eu/publications-deliverables/deliverables
https://hector-project.eu/publications-deliverables/deliverables

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

[89] Nicky Mouha, Qingju Wang, Dawu Gu, and Bart Preneel. Differential and linear crypt-
analysis using mixed-integer linear programming. In Chuankun Wu, Moti Yung, and
Dongdai Lin, editors, Security and Cryptology – Inscrypt 2011, volume 7537 of LNCS,
pages 57–76. Springer, 2011.

[90] Sean Murphy. The Return of the Cryptographic Boomerang. IEEE Transactions on
Information Theory, 57(4):2517–2521, 2011.

[91] Jorge Nakahara, Daniel Santana de Freitas, and Raphael Chung-Wei Phan. New Multiset
Attacks on Rijndael with Large Blocks. In Ed Dawson and Serge Vaudenay, editors,
Mycrypt, volume 3715 of Lecture Notes in Computer Science, pages 277–295. Springer,
2005.

[92] Jorge Nakahara and Ivan Carlos Pavão. Impossible-Differential Attacks on Large-Block
Rijndael. In Juan A. Garay, Arjen K. Lenstra, Masahiro Mambo, and René Peralta,
editors, ISC, volume 4779 of Lecture Notes in Computer Science, pages 104–117. Springer,
2007.

[93] Ivica Nikolić. Tiaoxin v2. Submission to the CAESAR competition, 2015.

[94] Svetla Nikova, Vincent Rijmen, and Martin Schläffer. Secure hardware implementation of
non-linear functions in the presence of glitches. In Pil Joong Lee and Jung Hee Cheon,
editors, Information Security and Cryptology - ICISC 2008, volume 5461 of Lecture Notes
in Computer Science, pages 218–234. Springer, 2008.

[95] NIST. Specification for the Advanced Encryption Standard (AES). Federal Information
Processing Standards (FIPS) Publication 197, 2001.

[96] Thomas Peyrin. Chosen-salt, chosen-counter, pseudo-collision for the compression function
of SHAvite-3. NIST mailing list, 2009.

[97] Bart Preneel, René Govaerts, and Joos Vandewalle. Hash functions based on block ciphers:
A synthetic approach. In Advances in Cryptology - CRYPTO ’93, volume 773 of LNCS,
pages 368–378. Springer, Heidelberg, 1993.

[98] Emmanuel Prouff, Matthieu Rivain, and Régis Bevan. Statistical Analysis of Second Order
Differential Power Analysis. IEEE Transactions on Computers, 58(6):799–811, 2009.

[99] Phillip Rogaway and Thomas Shrimpton. Cryptographic hash-function basics: Definitions,
implications, and separations for preimage resistance, second-preimage resistance, and
collision resistance. In Fast Software Encryption 2004, volume 3017 of LNCS, pages
371–388. Springer, Heidelberg, 2004.

[100] Phillip Rogaway and John Steinberger. Constructing cryptographic hash functions from
fixed-key blockciphers. In Advances in Cryptology - CRYPTO 2008, volume 5157 of LNCS,
pages 433–450. Springer, Heidelberg, 2008.

[101] Sondre Rønjom. Invariant subspaces in Simpira. Cryptology ePrint Archive, Report
2016/248, 2016.

[102] Yu Sasaki, Sareh Emami, Deukjo Hong, and Ashish Kumar. Improved known-key distin-
guishers on Feistel-SP ciphers and application to Camellia. In Australasian Conference on
Information Security and Privacy - ACISP 2012, volume 7372 of LNCS, pages 87–100.
Springer, Heidelberg, 2012.

HECTOR D3.3 Page 137 of 139

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

[103] Yu Sasaki and Kan Yasuda. Known-key distinguishers on 11-round Feistel and collision
attacks on its hashing modes. In Fast Software Encryption 2011, volume 6733 of LNCS,
pages 397–415. Springer, Heidelberg, 2011.

[104] Bruce Schneier, editor. Fast Software Encryption, 7th International Workshop, FSE 2000,
New York, NY, USA, April 10-12, 2000, Proceedings, volume 1978 of Lecture Notes in
Computer Science. Springer, 2001.

[105] Willem Schroé, Bart Mennink, Elena Andreeva, and Bart Preneel. Forgery and subkey
recovery on CAESAR candidate ifeed. In Orr Dunkelman and Liam Keliher, editors,
Selected Areas in Cryptography - SAC 2015 - 22nd International Conference, Sackville,
NB, Canada, August 12-14, 2015, Revised Selected Papers, volume 9566 of Lecture Notes
in Computer Science, pages 197–204. Springer, 2015.

[106] Thomas Shrimpton and Martijn Stam. Building a collision-resistant compression function
from non-compressing primitives. In International Colloquium on Automata, Languages
and Programming - ICALP (2) 2008, volume 5126 of LNCS, pages 643–654. Springer,
Heidelberg, 2008.

[107] Martijn Stam. Blockcipher-based hashing revisited. In Fast Software Encryption 2009,
volume 5665 of LNCS, pages 67–83. Springer, Heidelberg, 2009.

[108] K. Tiri, M. Akmal, and I. Verbauwhede. A dynamic and differential CMOS logic with
signal independent power consumption to withstand differential power analysis on smart
cards. In Solid-State Circuits Conference - ESSCIRC 2002, pages 403–406, 2002.

[109] Kris Tiri and Ingrid Verbauwhede. A Logic Level Design Methodology for a Secure DPA
Resistant ASIC or FPGA Implementation. In Design, Automation and Test in Europe -
DATE 2004, pages 246–251. IEEE Computer Society, 2004.

[110] Elena Trichina. Combinational Logic Design for AES SubByte Transformation on Masked
Data. Cryptology ePrint Archive, Report 2003/236, 2003. http://eprint.iacr.org/

2003/236.

[111] David Wagner. The Boomerang Attack. In Lars R. Knudsen, editor, FSE, volume 1636 of
LNCS, pages 156–170. Springer, 1999.

[112] Qingju Wang, Dawu Gu, Vincent Rijmen, Ya Liu, Jiazhe Chen, and Andrey Bogdanov.
Improved Impossible Differential Attacks on Large-Block Rijndael. In Taekyoung Kwon,
Mun-Kyu Lee, and Daesung Kwon, editors, ICISC, volume 7839 of Lecture Notes in
Computer Science, pages 126–140. Springer, 2012.

[113] Qingju Wang, Zhiqiang Liu, Deniz Toz, Kerem Varici, and Dawu Gu. Related-key rectangle
cryptanalysis of rijndael-160 and rijndael-192. IET Information Security, 9(5):266–276,
2015.

[114] Hongjun Wu and Bart Preneel. AEGIS v1. Submission to the CAESAR competition,
2014.

[115] Shingo Yanagihara and Tetsu Iwata. Type 1.x generalized Feistel structures. IEICE
Transactions, 97-A(4):952–963, 2014.

HECTOR D3.3 Page 138 of 139

http://eprint.iacr.org/2003/236
http://eprint.iacr.org/2003/236

D3.3 - Report on the Security Evaluation of Cryptographic Algorithms & Countermeasures [...]

[116] Dingfeng Ye, Peng Wang, Lei Hu, Liping Wang, Yonghong Xie, Siwei Sun, and Ping Wang.
PAES v1. Submission to the CAESAR competition, 2014.

[117] Lei Zhang, Wenling Wu, Je Hong Park, Bonwook Koo, and Yongjin Yeom. Improved
Impossible Differential Attacks on Large-Block Rijndael. In Tzong-Chen Wu, Chin-Laung
Lei, Vincent Rijmen, and Der-Tsai Lee, editors, ISC, volume 5222 of Lecture Notes in
Computer Science, pages 298–315. Springer, 2008.

[118] Liting Zhang, Wenling Wu, Han Sui, and Peng Wang. iFeed[AES] v1, 2014. Submission
to CAESAR competition.

HECTOR D3.3 Page 139 of 139

	Introduction
	Cryptanalysis based on non-ideal keys
	Introduction
	Related-Key Rectangle Cryptanalysis of Rijndael-160 and Rijndael-192
	Introduction
	Description of Rijndael
	Rectangle Attack
	Designing the rectangle distinguisher
	Attack on 8-Round Rijndael-160/160
	Attack on 10-Round Rijndael-192/192

	Subkey Recovery on CAESAR candidate iFeed
	Introduction
	Description of iFeed
	Forgery and Subkey Recovery Attack on iFeed
	Finding EK(P*) for Any Plaintext P*
	Discussion

	Related-Tweakey Differential Attack on MANTIS-5
	Introduction
	Description of MANTIS
	Differential Characteristic
	Key Recovery
	Discussion

	Known-Key Differential Attack on Simpira v1
	Introduction
	Description of Simpira
	Collision Attacks on Simpira-4 Hash

	Conclusion

	Weak Cipher Model: cryptanalysis of hash functions
	Introduction
	The Weak Cipher Model
	Security Model
	Random Weak Cipher
	Random Abortable Weak Cipher

	Modeling Known-Key Attacks
	Application to PGV Compression Functions
	Collision Security
	Preimage Security

	Application to Grøstl Compression Function
	Collision Security
	Preimage Security

	Application to Shrimpton-Stam Compression Function
	Collision Security
	Preimage Security

	Conclusion

	Lightweight cryptographic post-processing
	Introduction
	Optimization by reusing cryptographic primitives
	Cryptographic post-processing for PUFs
	Cryptographic post-processing for TRNGs

	How to integrate cryptographic post-processing and lightweight symmetric-key crypto
	Motorist-layer construction
	Duplex-sponge construction

	Conclusion and other use cases

	Security degradation of side channel countermeasures
	Background
	Differential side channel attacks
	Side channel countermeasures

	Testing Framework
	Experimental setup with HECTOR board

	Generating non-ideal random numbers
	Synthetic sets
	Real sets.

	Conclusions

	Simulation-based analysis of security degradation
	Introduction
	Analysis of unprotected implementation
	Analysis of Masking countermeasures
	Boolean Masking
	Inner Product Masking

	Analysis of Hiding countermeasures
	Validation of simulation results
	Conclusions

	Experimental-based analysis of security degradation
	Boolean masking
	Countermeasure principle
	Measurement results

	DES dummy round
	Countermeasure principle
	Measurement results

	Vertical noise addition
	Countermeasure principle
	Measurement results

	Dummy rounds and vertical noise
	Countermeasure principle
	Measurement results

	Conclusions

	Progress efficient crypto and countermeasures
	Unified Masking Approach: Application to Ascon
	Introduction to the Unified Masking Approach
	Practical Evaluation on Ascon
	Side Channel Evaluation
	Discussion on the Randomness Costs and Conclusions

	Symbolic analysis of higher-order side channel countermeasures
	Notation and definitions
	A method for detecting higher order vulnerability

	Towards Side Channel Analysis at Design Time
	Introduction
	Side Channel Aware Design Flow
	Experimental Results
	Conclusions

	Conclusions
	List of Abbreviations

