
D3.1
Report on the Efficient Implementations of Crypto

Algorithms & Building Blocks
and on Cost and Benefits of Countermeasures Against Physical Attacks

Project number: ICT-644052
Project acronym: HECTOR

Project title: Hardware Enabled Crypto and Randomness
Project Start Date: 1 March, 2015

Duration: 36 months
Programme: H2020-ICT-2014-1

Deliverable Type: Report
Reference Number: ICT-644052-D3.1-1.0

Workpackage: WP 3
Due Date: Feb 2017 - M24

Actual Submission Date: 28 February, 2017

Responsible Organisation: ST Italy
Editor: Filippo Melzani

Dissemination Level: Public
Revision: 1.0

Abstract:

This report represents the final version of Deliverable 3.1
of the HECTOR work package WP3. It covers two main ac-
tivities. First, the definition of cryptographic primitives, with
a special focus on authenticated encryption and their effi-
cient implementations in hardware. Second, the study of
side-channel attacks and countermeasure for those cryp-
tographic primitives. In this context our contribution is
twofold. We analyze the attacks and propose countermea-
sure from the system-level viewpoint. Then we introduce a
methodology for the evaluation at design-time of the side-
channel robustness of hardware implementations.

Keywords: Authenticated Encryption, Side-channel attacks, Side-
channel countermeasures, Side-channel evaluation

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement no. 644052.

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

Editor

Filippo Melzani (ST Italy)

Contributors (ordered according to beneficiary numbers)

Josep Balasch, Danilo Šijačić (KUL)
Guido Bertoni, Filippo Melzani, Ruggero Susella (STI)
Maria Eichelseder, Thomas Korak (TUG)

Disclaimer

The information in this document is provided as is, and no guarantee or warranty is given that the
information is fit for any particular purpose. The content of this document reflects only the author‘s
view the European Commission is not responsible for any use that may be made of the information
it contains. The users use the information at their sole risk and liability.

HECTOR D3.1 Page I

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

Executive Summary

This deliverable concerns the activities carried out within tasks T3.3 and T3.4 of the HECTOR
project. It covers two main topics: efficient hardware implementations of cryptographic prim-
itives and side-channel protection of such primitives. These two activities are tightly con-
nected. Considering side-channel protection from the beginning when defining new crypto-
graphic primitives, results in more efficient implementations, and helps making side-channel
protection more affordable.

Our focus has been mostly on algorithms based on the sponge construction because of its
efficiency and security gains potential and because HECTOR partners are among its initial
and very active contributors. Knowledge of the state of the art of side-channel attacks and
research on countermeasures is fundamental in order to achieve effective designs. Finally,
in order to improve efficiency in the process of implementing side-channel-protected crypto-
graphic functions, we propose a methodology allowing to help designers to guarantee and
verify at design-time that the final implementation will meet the expected security claims.
One of the goals of the HECTOR project is to stimulate research on these topics, which can
have an important impact on the industrial adoption of solutions embedding the state of the
art protections.

This deliverable is organized as follows. The overall topic of the report is introduced in
Chapter 1.
The important role of Authenticated Encryption (AE) algorithms is explained in Chapter 2,
together with the description of the algorithms designed by HECTOR partners. The chapter
covers both considerations on the algorithms’ specification and strategies towards imple-
mentation efficiency. This supports a reasoned selection of the cryptographic blocks used in
the applicative use cases targeted in the HECTOR project.
Chapter 3, provides an overview of attacks that can be carried out against a device and
describes countermeasures, with a particular focus on those implementable at system level.
Such analysis is instrumental for the evaluation of the overall security of a device and it
lays-down options to efficiently protect cryptographic algorithms, including those described
in Chapter 2.
In Chapter 4, we propose a methodology to effectively realize hardware implementations of
cryptographic algorithms with side-channel countermeasures. Such methodology includes
a first part that focuses on the specification of the hardware IP through functional languages,
and a second part that investigates how to model some important properties of the hardware
instantiations (i.e. glitches) that are critical in order to achieve protection.
Finally, Chapter 5 concludes this deliverable.

HECTOR D3.1 Page II

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

Contents

1 Introduction 1

2 Cryptographic Algorithms for Authenticated Encryption 3
2.1 Authenticated Encryption . 3
2.2 Permutation-based Cryptography . 6

2.2.1 The sponge construction . 6
2.2.2 SHA-3 . 8

2.3 Algorithms for Authenticated Encryption . 9
2.3.1 KEYAK . 9
2.3.2 KETJE . 15
2.3.3 ASCON . 18
2.3.4 PRIMATEs . 20

2.4 AE implementations in Hardware . 22
2.4.1 Hardware interface . 22
2.4.2 KEYAK . 22
2.4.3 KETJE . 23
2.4.4 ASCON . 24
2.4.5 PRIMATEs . 25

2.5 Improvements towards Efficiency . 27

3 System-level Vulnerabilities and Countermeasures 28
3.1 Rationale . 28
3.2 Attacks . 29

3.2.1 Classification of Side-Channel-Attacks 29
3.2.2 Basic Concept of Side-Channel Attacks 31
3.2.3 Types of Side-Channel Information Leaks 31
3.2.4 Passive Physical Attacks . 33
3.2.5 Active Physical Attacks . 33

3.3 Countermeasures . 40
3.3.1 Implementation-Level Countermeasures 40
3.3.2 Protocol-Level Countermeasures . 45

4 Side-channel-aware HW Designs 53
4.1 Functional Specifications of Cryptographic Circuits 53

4.1.1 Motivations . 53
4.1.2 The current state of cryptographic algorithm design 55
4.1.3 Implementing AES with CλaSH . 65
4.1.4 Comparison of AES HW designs . 71
4.1.5 Implementing 1st order countermeasures in CλaSH 78

HECTOR D3.1 Page III

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

4.1.6 Conclusions . 85
4.2 Hazard Algebra . 87

4.2.1 Motivations . 87
4.2.2 Hazard Algebra . 88
4.2.3 LP Model . 90
4.2.4 Propagation Sequences . 90
4.2.5 Order of an Attack . 94
4.2.6 Power Consumption Models . 98
4.2.7 Application to KECCAK . 101
4.2.8 Conclusions . 113

5 Summary and Conclusion 116

6 List of Abbreviations 118

HECTOR D3.1 Page IV

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

List of Figures

2.1 The Sponge construction. 7
2.2 The Duplex construction. 8
2.3 A session in MOTORIST. 11
2.4 The MONKEYDUPLEX construction. 16
2.5 ASCON’s mode of operation. 20
2.6 HANUMAN-80 coprocessor architecture. 26

3.1 General notion of active and passive side-channel attacks. 31
3.2 Categorization of side-channel information leaks. 32
3.3 SFA - AES software implementation - single clock glitch. 37
3.4 SFA - AES software implementation - multiple clock glitches. 38
3.5 SFA - AES hardware co-processor - laser. 39
3.6 Clock glitch. 39
3.7 SFA - AES co-processor on a general-purpose microcontroller - clock glitch. . 40
3.8 Area requirements absolute (left) and in percent (right) per protection order. . 44
3.9 First-order t-test (left) and second-order t-test (right) for first-order secure AES

design. 45
3.10 First-order t-test (left) and second-order t-test (right) for second-order secure

AES design. 45
3.11 Encryption part: ISAPENC . 48
3.12 Authentication part: ISAPMAC (not showing authenticated data). 49
3.13 Re-keying inherently secure against DPA attacks: ISAPRK1 50
3.14 Sponge construction for re-keying: ISAPRK2 51

4.1 A simple synchronous dataflow graph. 57
4.2 Using the CλaSH register function to create a simple synchronous circuit. . 60
4.3 A finite state machine created by using CλaSH’s mealy function. 61
4.4 Top entity of the AES Primitive . 67
4.5 topEntity inner modules. The key is wired in at compile time. 67
4.6 Multicycle computation of AES cipher encoding. 67
4.7 Multicycle execution for each input data/plain text. 68
4.8 Architecture of the finite state machine. 68
4.9 Architecture of the finite state machine. 69
4.10 The State type. 69
4.11 The AESControlProcessor type. 70
4.12 Combining AESControlProcessors. 70
4.13 The lift function. 71
4.14 The round function. 72
4.15 Area occupation diagram, VHDL reference vs. Haskell/CλaSH. 74

HECTOR D3.1 Page V

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

4.16 Power consumption diagram, VHDL reference vs. Haskell/CλaSH. 75
4.17 Area occupation diagram, original design vs. tower-field version (both in

Haskell/CλaSH). 76
4.18 Power consumption diagram, original design vs. tower-field version (both in

Haskell/CλaSH). 76
4.19 Area occupation diagram, original design vs. 32-bit version (both in Haskell/CλaSH). 77
4.20 Power consumption diagram, original design vs. 32-bit version (both in Haskell/CλaSH). 77
4.21 Overview of the masked computation. 78
4.22 Overview of the masked round. 79
4.23 Probes in the first round. 82
4.24 Histogram of mask values. 82
4.25 Histogram of key values. 82
4.26 Architecture with the probes for first-order analysis. 83
4.27 Correlation unmasked vs masked. 83
4.28 Correlation unmasked vs unmasked. 84
4.29 Distribution unmasked vs masked. 84
4.30 Distribution unmasked vs unmasked. 84
4.31 Per-byte distribution unmasked vs masked. 85
4.32 Architecture with the probes for second-order analysis between mask and

masked value. 85
4.33 Second-order Correlation between mask and masked value. 86
4.34 Architecture with the probes for second-order analysis between two masked

values. 86
4.35 Second-order Correlation between two masked values. 86
4.36 Circuit with transients. 94
4.37 Circuit with transients. 95
4.38 Order of an attack, in three dimensions: statistical moment, spatial points and

time instances. 96
4.39 Circuit of χ function. 101
4.40 Examples of LP model applied to the unshared χ, in two different cases: on

the left it is a case in which there are same leakages, and on the right it is a
case where there is no leakage. 102

4.41 Atomic circuit of χ with two shares. 103
4.42 Example of LP model applied to a branch of χ with two shares: at XOR level

there can be some leakages of m2, m3 and m4. 104
4.43 Distribution of consumptions collected with Power Consumption Model 4 for

propagation sequence 12345. 106
4.44 Distribution of consumptions collected with Power Consumption Model 4, prop-

agation sequence 12354. 106
4.45 Atomic circuit of χ with 3 shares. 108
4.46 Two atomic circuits of χ with 3 shares: on the left the circuit that produces

output ai is depicted, on the right there is the circuit that produces output bi. . 108
4.47 Example of LP model applied to two branches of χ with three shares: from

the first circuit there can be some leakages of m2 and m4 at XOR level, and
from the second circuit there can be some leakages of m2, m6, m7 and m8 at
XOR level. 109

HECTOR D3.1 Page VI

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

List of Tables

2.1 Recommended parameter configurations for ASCON. 19
2.2 Security levels of PRIMATEs family. 21
2.3 PRIMATEs modes of operation. 21
2.4 PRIMATE permutations. 22
2.5 KEYAK ASIC implementations, GMU interface. 23
2.6 KETJE ASIC implementations, GMU interface. 23
2.7 KETJE ASIC implementations, custom interface. 23
2.8 ASCON ASIC implementations, custom interface. 24
2.9 ASCON ASIC implementations, GMU interface. 25
2.10 Post-synthesis hardware implementation results of PRIMATE permutations. . 26

3.1 First-order secure AES-128 implementation results. 42
3.2 Second-order secure AES-128 implementation results. 43
3.3 Complexity for receiving a v-collision for a 128-bit session key k2. 49
3.4 Implementation results for secure re-keying functions (130 nm). 51
3.5 Implementation of the AE modes (130 nm). 51

4.4 Laws of Hazard Algebra. 89
4.5 Consumptions of unshared χ in accordance with Power Consumption Model

4, considering both propagation sequences. 103
4.6 Consumptions of an atomic circuit of χ with two shares in accordance with

Power Consumption Model 4, considering all propagation sequences. 105
4.7 Consumptions of an atomic circuit of χ with two shares and propagation se-

quence 12354, in accordance with Power Consumption Model 2 107
4.8 Consumptions of an atomic circuit of χ with three shares in accordance with

Power Consumption Model 4, considering all propagation sequences. 111
4.9 Consumptions of an atomic circuit of χ with three shares, with propagation

sequence 1324576 and in accordance with Power Consumption Model 2. . . 114

HECTOR D3.1 Page VII

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

Chapter 1

Introduction

Cryptographic primitives are the basic building blocks that allow developing and offering se-
curity services for all kinds of applications. The range of applications that cryptographic
primitives can serve is wide and the corresponding priorities on requirements vary exten-
sively. In the context of the HECTOR project, we decided to focus primarily on Authenticated
Encryption (AE), based on Sponges or Permutation-based constructions, with the objective
to optimize the overall efficiency.
In the past, cryptographic algorithms have been developed targeting specific security prop-
erties, such as either confidentiality or authenticity of data (one at a time). However, real-life
applications usually require a set of properties. In particular, a common requirement is to
enforce both the confidentiality and authenticity of a message. Authenticated Encryption
refers to the class of cryptographic algorithms providing the means to protect both the confi-
dentiality and authenticity of data. This is especially useful in use cases where the attacker
can eavesdrop and actively manipulate data. These scenarios include several real-world
applications such as secure networking (SSL/TLS, IPSEC, SSH), or data-storage encryp-
tion. In most applications, there is not much value in keeping data secret if they are not also
authenticated. Data authentication is often more important than confidentiality.

An important motivation behind the focus on AE is the fact that it can serve a wide range
of applications. There is currently a lot of interest and intense research in the field looking
for solutions that are better than classical approaches. The worldwide cryptographic com-
munity organized workshops such as Direction In Authenticated Ciphers (DIAC), and the
Competition for Authenticated Encryption (CAESAR), with the specific goal of selecting few
algorithms providing state-of-the-art protection, efficiency, and ease of use for applications
requiring data authentication and privacy. This is of particular interest within HECTOR since
some partners are participating to the CAESAR competition with their own candidate algo-
rithms.

Among the available alternatives, we will show in Chapter 2 how a recent cryptographic con-
struction (i.e. the cryptographic sponge construction) allows to re-use the same primitive for
different security services, including authentication, confidentiality and deterministic random
number generation, covering the applicative use cases envisioned in the HECTOR project.
The fact that a single primitive embedded in a device can be used for different tasks, implic-
itly leads towards efficient use of resources, and this is the rationale behind our focus on this
class of primitives within the HECTOR project. In Chapter 2 we will provide an overview of
the authenticated encryption algorithms designed by the HECTOR partners. Besides their

HECTOR D3.1 Page 1 of 129

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

original specifications, the focus of this document is to explain the improvements made to
those algorithms and their implementations towards efficiency in the context of the HECTOR
project.

The specification of cryptographic primitives with strong security properties from the mathe-
matical point of view is a fundamental first step, but it is not enough for achieving robust de-
vices in practice. During the last twenty years, the main threats against security devices have
been brought by the so-called side-channel attacks. Side-channel attacks exploit unintended
information leakage of computing devices or implementations to infer sensitive information.
Many actual attacks against cryptographic implementations have been presented. They
allow to extract key material by means of timing information, power consumption, or elec-
tromagnetic emanation. Although these attacks require the attacker to be in physical pos-
session of the device, they assume different types of attackers and levels of invasiveness.
In Chapter 3 we provide an overview of such attacks, together with some contributions that
are defining the cutting edge of research in this direction. This knowledge about attack
techniques is essential in order to develop and refine effective and often very sophisticated
countermeasures.

Designing and manufacturing devices that are practically robust against side-channel attacks
remains difficult. Even with strong cryptographic primitives and theoretically sound counter-
measures, achieving good practical robustness against side-channel attacks in physical im-
plementations remains challenging.
The information exploited by side-channel attacks are physical quantities that are not nec-
essarily easy to predict at design-time. For example, methodologies and tools for low power
designs that have been developed for a different purpose do not always provide the proper
level of detail required for a rigorous side-channel evaluation. More generally, standard de-
sign flows do not take into account design-time side-channel evaluation.

We believe that there is the need from the industry to achieve a side-channel-aware design
methodology in a similar way to methodologies for verification or low-power designs. Such a
methodology should help in the design choices and should help increase confidence about
the robustness of the resulting physical implementations. In Chapter 4 we describe our
attempts in this direction. We address the problem from two perspectives.
First, a top-down methodology based on Functional Languages is introduced, with the goal
of closing the gap between high-level specifications and hardware implementations.
Second, as bottom-up approach, we propose a way to model one of the most critical aspects
of side-channel-aware hardware design, i.e. the leakages resulting from transitional glitches
induced by combinational logic in synchronous designs. These two approaches are com-
plementary to each other and are providing encouraging results. We hope this will stimulate
further research on this fundamental topic.

HECTOR D3.1 Page 2 of 129

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

Chapter 2

Cryptographic Algorithms for
Authenticated Encryption

In the context of information security, the protection of the information relies on some high-
level security services, such as confidentiality or authenticity of data. In order to realize those
service requirements, several cryptographic tools have been introduced. Cryptography by
itself provides a set of basic tools needed to implement security services.
There exist different families of cryptographic primitives, such as:

• symmetric key ciphers, which use the same key to both encrypt and decrypt;

• public key systems, which instead have a key pair: one private and one public;

• cryptographic hash functions, which are able to generate a fixed size digest from
any message, in order to check that the message has not been modified;

• generators of random values.

More than one primitive can be used in order to realize a task. For instance, a digital signa-
ture can require a public key function, a hash function as well as a random generator.

The HECTOR project mainly addresses:

• random generators, which are discussed in the context of the WP2;

• symmetric key ciphers and hash functions, in particular when they are used to achieve
at the same time both authenticity and confidentiality of the data.

The latter point is the content of this chapter, which focuses on a new class of cryptographic
algorithms for Authenticated Encryption, specifically introduced to securely and efficiently
address applications requiring both authentication and confidentiality.

2.1 Authenticated Encryption

When communicating over an insecure channel, there are two main security properties that
must be guaranteed: confidentiality and authenticity of data.
It has long been known how to ensure both of them independently. For instance, starting
from a secure block cipher, confidentiality can be achieved by using a suitable encryption
mode [17] and authenticity can be achieved by using a block cipher-based MAC [18].

HECTOR D3.1 Page 3 of 129

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

To ensure jointly the two properties, the two constructions can be combined. For instance,
one might encrypt a string, prepend a header and then MAC the resulting string. However,
it might not be the most efficient solution, especially when the two schemes rely on two
different primitives. Moreover, the combination is left to the practitioners and if not properly
done, it can have dramatic consequences for security [84, 52, 5].
For these reasons, interest has shifted in recent years towards the definition of so-called
AE schemes, specialized constructions that simultaneously provide confidentiality and au-
thenticity of data. The advantage of such ad-hoc constructions is that they can handle both
properties with a single primitive, usually with a single key, resulting in better efficiency and
less prone to incorrect usage.

A number of AE designs started to appear around 2000, such as IAPM [80, 81], XCBC [65]
and OCB [115, 114]. Six authenticated encryption modes (i.e. OCB 2.0, Key Wrap, CCM,
EAX, Encrypt-then-MAC (EtM) and GCM) have been standardized in ISO/IEC 19772:2009.
Three of them (Key Wrap, CCM and GCM), based on the AES block cipher, have also been
standardized by the NIST and are the most commonly adopted.

• Key Wrap is an algorithm specifically designed for encrypting key material when it is
transmitted over untrusted channels or stored in untrusted places. It uses the AES
to securely encrypt key message and an IV for the integrity check. When the key is
unwrapped, the recovered IV value is compared with the expected one and if there
is a match the key is accepted as valid. Otherwise not. The properties achieved by
this integrity check depend on the definition of the IV. For instance, an application
might require to check the integrity of a key throughout its lifecycle or just when it is
unwrapped.

• The CCM (Counter with CBC-MAC), as the name suggests, combines the CBC-MAC
mode for authentication with the counter mode for encryption. Specifically, at first CBC-
MAC is computed on the message to obtain a tag and then message and tag are
encrypted using counter mode. Thus, the overall computation requires two AES en-
cryption operations per message block and the same encryption key can be used for
both of them. A designer can thus choose between using two blocks and execute the
two passes in parallel or using a single block to perform the two passes in sequence.
The first approach will lead to a bigger but faster design, while the second approach
will lead to a smaller but slower design. However, the CBC-MAC is not parallelizable.
Thus, the maximum achievable performances depend on the throughput of the under-
lying block cipher, i.e. the AES.

• The GCM (Galois Counter Mode) can take full advantage of parallel processing, which
makes it widely adopted. It combines counter mode to encrypt the message and Ga-
lois field multiplication to combine the ciphertext with an authentication code, obtaining
an authentication tag that can be used to check integrity of data. Thus, the scheme re-
quires one AES encryption operation and one 128-bit field multiplication per message
block. Both can be easily parallelized and this allows GCM to reach higher throughput
with respect to other modes like CCM. GCM is adopted in the IEEE 802.1AE (MAC-
sec) Ethernet security, ANSI (INCITS) Fibre Channel Security Protocols (FC-SP), IETF
IPsec standards, SSH and TLS 1.2.

HECTOR D3.1 Page 4 of 129

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

In 2010, Bertoni et al. presented an AE scheme based on the duplex construction [30],
showing that confidentiality and authenticity can be achieved together with a single call to
the underlying function. It is also the first AE mode based on a permutation instead of a
block cipher and that supports intermediate tags.
The ECRYPT network organized the DIAC workshop in 2012 [1], with the aim of evaluating
the state of the art in AE and collect input from the community regarding desired future di-
rections. The workshop has shaped the CAESAR competition [126], which started in 2014
and whose goal is to define (by the end of 2017) a portfolio of AE schemes suitable for
widespread adoption. Several schemes have been proposed and all of them have been
made public for evaluation. The designs submitted to the competition follow different con-
structions: from purely ad-hoc designs to compression function-based and from sponge
constructions to block cipher operating modes.

AE schemes are usually required to handle so-called associated data (AD), namely pieces
of information bound to the ciphertext (such as an IP address) that are authenticated but not
encrypted. This feature is so important that all modern AE schemes support it.
In order to achieve strong security goals, AE schemes must employ a random IV or a nonce.
This follows from the fact that AE schemes are usually built from deterministic primitives.
Thus, it is fundamental to ensure high entropy for the IV and non-repetition for the nonce,
otherwise the lack of these guarantees can lead to major security breaches. For instance,
the repetition of a nonce in OCB allows the attacker to detect repeated message blocks since
the corresponding ciphertext blocks will be equal, thus breaking confidentiality.
High-entropy for the IV and non-repetition for the nonce can be hard to achieve in some con-
texts, for instance when the randomness source is not good or the device where encryption
is implemented is stateless. For this reason, interest has grown in designing schemes where
the repetition of a nonce has a limited impact on security. Such schemes are called nonce-
misuse resistant AE (MRAE) [116] and ensure that authenticity is not affected by nonce
repetition and that confidentiality is harmed only if the adversary can detect that a triplet
(nonce,AD,message) has been repeated. Example of nonce-misuse resistant schemes are
EAX [19], SIV [116], AEZ [74] and GCM-SIV [72].
The notion of MRAE requires that each bit of the ciphertext depends on all bits of the plain-
text, and then it cannot be achieved by online schemes. Thus a relaxed definition, called
online AE (OAE), was introduced in [58], which can be achieved with a single pass on the
plaintext. Examples of OAE are McOE [58], COPA [7] and POET [2]. However, some recent
attacks reduced the interest in OAE, especially the chosen-prefix/secret-suffix (CPSS) attack
[75].

Most AE schemes provide birthday-bound security with respect to the length of the block of
the underlying primitive. Thus, if the primitive is for example AES (with block length of 128
bits) security is lost after 264 calls at best. Moreover, attacks matching this bound are known.
For instance, OCB authenticity can be broken by a collision-based attack with 264 message
blocks [57].
Doubling the block length would improve the security. However, this approach penalizes
performances (as can be seen in generic constructions of block ciphers with double block
length) and would be problematic in hardware due to the area cost of the internal state.
Algorithms based on the sponge construction can easily overcome this limitation, by properly
sizeing the capacity vs the rate portions of the internal state.

HECTOR D3.1 Page 5 of 129

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

2.2 Permutation-based Cryptography

We introduce here the concept of cryptographic sponge, and more generally of permutation-
based cryptography, with the aim of showing why such construction is perfectly suited to
securely and efficiently address the need for AE, which is a relevant objective of the HECTOR
project.
The sponge construction is a mode of operation, based on a fixed-length permutation, which
builds a function mapping variable-length input data to variable-length output data. It has
been originally introduced by Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van
Assche in [23]. Such a function is called sponge function.
A sponge function is a generalization of both hash functions, which have a fixed output
length, and stream ciphers, which have a fixed input length. It operates on a finite state by
iteratively applying the inner permutation to it. Depending on the specific usage, the per-
mutation is interleaved with stages where input data are combined into the internal state or
output data are extracted from the state.

One very interesting practical property of the sponge construction is that it can be used to im-
plement a wide variety of cryptographic functions. This includes hashing, reseedable pseudo
random number generation, key derivation, encryption, message authentication code com-
putation and authenticated encryption. The fundamental cryptographic primitive underlying
all this is a fixed-length permutation. These permutation-based modes are efficient alterna-
tives for all the applications usually addressed with the classical symmetric ciphers. Com-
pared with such symmetric ciphers, from the implementation point of view, a permutation
has the advantages that it does not have a key schedule and that its inverse does not need
to be implemented or efficient.

2.2.1 The sponge construction

The sponge construction is a simple iterated construction for building a function F with
variable-length inputM and arbitrary output length Z based on a fixed-length permutation (or
transformation) f operating on a fixed number b of bits. The sponge construction operates
on a state of b = r + c bits. The value r is called the bitrate and the value c the capacity.
As depicted in Figure 2.1, first the input string M is split into blocks of r bits. Then the b bits
of the state are initialized to zero and the sponge construction proceeds in two phases:

• In the absorbing phase, the r-bit input blocks are XORed into the first r bits of the
state, interleaved with applications of the function f . When all input blocks are pro-
cessed, the sponge construction switches to the squeezing phase.

• In the squeezing phase, the first r bits of the state are returned as output blocks,
interleaved with applications of the function f . The number of output blocks is chosen
at will by the user, in order to reach the desired number of output bits `.

The last c bits of the state are never directly affected by the input blocks and are never output
during the squeezing phase.
In the definition of an algorithm based on a cryptographic sponge, the fundamental aspect
is that the primitive to be designed is a fixed-length permutation rather than harder-to-build
structures such as block ciphers or dedicated compression functions. This means that all

HECTOR D3.1 Page 6 of 129

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

Figure 2.1: The Sponge construction.

the supported cryptographic services can be realized using only a single primitive: a fixed-
length permutation. Differently from classical block ciphers, the sponge construction does
not require different processing for the message and for the key, resulting then in a simpler
design.

The only property required to the permutation in order to be used for a secure cryptographic
primitive is that it cannot be distinguished from a typical randomly-chosen permutation. Con-
cretely this means that the permutation must not exhibit any special property that makes
easier for an attacker to predict its output compared to finding it by random guesses.
Ultimately, it is necessary to design a permutation f on b = r + c bits that cannot be distin-
guished from a random permutation, and then the sponge construction can be used to build
the sponge function F . Among the defined bits of the state b, the size of the capacity c sets
the level of security claimed by the resulting cryptographic primitive. Using the same state
size b and the same permutation defined on b bits, it is possible to trade security for speed by
increasing the size of the capacity c and decreasing the bitrate r accordingly, or vice-versa.
The sponge construction allows to build various cryptographic primitives (e.g. hash func-
tions, stream ciphers, MAC) since it supports both arbitrarily long input and output sizes. In
fact some cases require to use a short input to generate a long output (e.g. a key stream).
Some others, instead, have to process a long input in order to generate a short output (e.g.
a hash digest or a MAC).
Besides the pure sponge construction just described, the duplex construction has also been
introduced by the same authors (see [30]). It is represented in Figure 2.2. The duplex
construction is closely related to the sponge construction and their security can be shown to
be equivalent.
Compared to the original sponge construction, the duplex construction allows:

• To interleave stages of data absorbing with stages of data squeezing;

• To process input data and generate output data at the same stage.

This allows for instance to implement an efficient reseedable pseudo random bit generator,
or an authenticated encryption scheme requiring only one call to f per input (or output) block.

HECTOR D3.1 Page 7 of 129

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

Figure 2.2: The Duplex construction.

2.2.2 SHA-3

The most prominent example of cryptographic primitive built on the sponge construction is
KECCAK. KECCAK is a cryptographic sponge function family that has become the FIPS-202
(SHA-3 [45]) standard.
As we have explained, the main building block required in the sponge construction is the
permutation. The KECCAK instances are built upon one of seven permutations named
KECCAK-f [b], with b = 25, 50, 100, 200, 400, 800 or 1600. In the scope of the SHA-3 con-
test, only the largest one has been proposed, but smaller (or more lightweight) permutations
can still be effectively used in constrained environments. Each permutation consists of the
iteration of a simple round function, similar to a block cipher without a key schedule. The
choice of operations is limited to bitwise XOR, AND and NOT and rotations. Any kind of
table-lookups, arithmetic operations, or data-dependent rotations are avoided.
One of the main interesting features of KECCAK is the flexibility it inherits from the sponge
construction:

• KECCAK has arbitrary output length. This allows to simplify modes of use where
dedicated constructions would be needed for fixed-output-length hash functions. In
particular, it can be natively used for hashing, stream encryption, and MAC computa-
tion.

• As a duplex object, KECCAK can be used in several clean and efficient modes as a
reseedable pseudo-random generator and for authenticated encryption. Efficiency of
duplexing comes from the absence of the output transformation.

• KECCAK has a simple security claim. A given security strength level can be targeted
by means of choosing the appropriate capacity. This means that for a given capacity
c, KECCAK is claimed to stand any attack up to complexity 2c/2 (unless easier gener-
ically). This is similar to the approach of security strength used in NIST’s SP 800-57
[14].

• The security claim is disentangled from the output length. There is a minimum
output length as a consequence of the chosen security strength level (to avoid generic

HECTOR D3.1 Page 8 of 129

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

birthday attacks), but it is not the other way around. Namely, it is not the output length
that determines the security strength level.

• The instances proposed for SHA-3 make use of a single permutation for all security
strengths. This cuts down implementation costs compared to hash function families
making use of two (or more) primitives, such as the SHA-2 family. Moreover, with the
same permutation the desired performance-security trade-off can be realized by simply
choosing the appropriate capacity-rate pair.

From the implementation point of view, KECCAK excels in hardware performance, with speed/area
trade-offs, especially when compared to classical SHA algorithms (e.g. it outperforms SHA-2
by an order of magnitude). For instance, Grkaynak et al. in [73] report a maximum through-
put of 4.235 Gbit/s for SHA-2 and 27.162 Gbit/s for KECCAK implemented on the same
technology.

2.3 Algorithms for Authenticated Encryption

The sponge construction (and in general permutation-based constructions) can be used to
implement authenticated encryption by defining a proper mode of operation on top of it. A
mode of operation specifies how the input and output data must be formatted and possibly
combined when provided to and collected from the underlying cryptographic primitive. AES-
GCM and AES-CCM are notable examples of modes of operations built on top of the AES
cryptographic primitive.

2.3.1 KEYAK

KEYAK is a family of algorithms for authenticated encryption, all sharing the same structure
based on the duplex construction, as defined in section 2.2.1.
The original first version of the KEYAK algorithm was submitted as candidate to the CAESAR
competition in 2014 and it was a plain instantiation of the duplex construction. KEYAK has
currently been accepted to the third round of the CAESAR competition.

KEYAK has been designed in order to get the most from KECCAK when applied to the specific
case of AE. Following this idea, the underlying permutation is the same, with a reduced
number of rounds compared to the general case that also serves non-keyed states (e.g.
hashing in the SHA-3 context). This means that the security properties of KEYAK directly
derive from KECCAK and the benefit from all the cryptanalysis on KECCAK.
After the selection for the second round, KEYAK’s authors introduced an improved mode of
operation for the algorithm, which extended the plain duplex construction for the specific
context of AE. This new construction is named Motorist mode and since it is now the basis
for the KEYAK algorithm and it brings several benefits, it is described below. Besides being
the foundation of KEYAK, in general the Motorist is a mode that can be built on top of any
generic cryptographic sponge primitive and it improves the overall efficiency, which is one of
the targets of the HECTOR project.

HECTOR D3.1 Page 9 of 129

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

Motorist authenticated encryption mode

The Motorist mode has been introduced in [29] in order to specifically target AE built on
top of sponge-based cryptographic primitives. The Motorist mode allows to encrypt and to
guarantee the authenticity of sequences of messages in sessions (rather than only a single
message). A message consists of a plaintext and possibly some associated data.

At high level (see Figure 2.3), each original message is processed by enciphering the plain-
text into a ciphertext and computing a tag over the full sequence of messages. The result
consists of a ciphertext, possible associated data (in clear) and a tag. Each encrypted
packet, can be unwrapped by deciphering back the ciphertext into the original plaintext,
verifying the tag (related to both the plaintext and the associated data), and returning the
plaintext only if the tag is valid. A message can also consist of additional data alone, which
means that there will be no corresponding ciphertext. Within the same session, the tag of
a message authenticates the full sequence of messages sent/received since the start of the
session, and not only the specific message as commonly done by classical algorithms (e.g.
AES-CCM, AES-GCM). The start of a session requires a secret key and possibly a nonce,
if the secret key is not unique for the session. The Motorist mode is sponge-based and sup-
ports one or more duplex instances operating in parallel. It makes duplexing calls with input
containing key, nonce, plaintext and associated data and uses its output as tag or as key
stream bits for encryption (or decryption).

As mentioned before, the duplex instances in the Motorist mode differ from the original du-
plex construction as described in 2.2.1. The main difference is that the new instances use
the full size of the permutation to process data, rather than only the rate part. This variant,
initialized with a secret key and denoted fullstate keyed duplex (FSKD), was introduced by
Mennink, Reyhanitabar and Vizr [8]. They proved a strong result on the generic security of
the FSKD. More precisely, they give an upper bound on the advantage of distinguishing a
FSKD calling a random permutation from a random oracle, which is quite close to that of
the original keyed duplex construction. This means that increasing the input block length
from the rate (r bits) to the width of the permutation (b bits) has no noticeable impact on the
generic security, while allowing the injection of more bits per call to the underlying permu-
tation, thus improving performance. At high level, the new Motorist mode offers the same
functionality as the original duplex construction of the initial candidates, and it is still built on
the security of the sponge construction.

In addition, the Motorist mode supports a parameterized degree of parallelism, in order to
sustain very high throughputs. The message is properly distributed over the different duplex
instances. It also performs some dedicated processing at the end of each message (called
a knot), in order to produce a tag that depends on the full message and not only on the
data injected in a single duplex instance. Furthermore, chaining values are extracted from
each duplex instance, concatenated, and injected into all duplex instances. This makes the
state of all duplex instances depend on the full sequence of messages. At the end a tag
is extracted from a single duplex object. To start a session, Motorist takes as input a string
that must be secret and (globally) unique, called SUV (Secret and Unique Value). The SUV
plays the classical role of secret key and initialization vector.

Figure 2.3 shows a session in MOTORIST. First, the session is started with a given secret
and unique value (SUV). Optionally, a tag T (0) on SUV can be produced or verified. Then,

HECTOR D3.1 Page 10 of 129

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

0 SUV
1

T(0)

0 SUV
1

T(0)

A(1)P(1)

C(1) T(1)

0 SUV
1

T(0)

A(1)P(1)

C(1) T(1)

P(2)

C(2) T(2)

0 SUV
1

T(0)

A(1)P(1)

C(1) T(1)

P(2)

C(2) T(2)

A(3)

T(3)

Figure 2.3: A session in MOTORIST.

HECTOR D3.1 Page 11 of 129

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

MOTORIST processes both the plaintext P (1) and additional data A(1) in parallel. The plaintext
P (1) is encrypted into ciphertext C(1) and T (1) authenticates (SUV, P (1), A(1)). After process-
ing the second message, T (2) authenticates (SUV, P (1), A(1), P (2), A(2)), and after the third
message, T (3) authenticates the full session (SUV, P (1), A(1), P (2), A(2), P (3), A(3)), where P (3)

is the empty string.
More formally, the Motorist mode is defined starting from its basic components as:

MOTORIST[f,Π,W, c, τ]

where:

• f represents the permutation of the underlying sponge primitive;

• Π is the number of parallel instances, with 1 ≤ Π ≤ 255 (see Pistons in the description
below);

• W represents the alignment in bits and it defines the basic atomic size of data, with W
a strictly positive multiple of 8;

• c is the required capacity in bits and it sets the trade-off between security and perfor-
mance;

• τ is the tag length in bits, and it must be a multiple of W .

Securing two-way communication between two parties is a prominent use case for AE where
the management of session results being very valuable. In that case, for each message it is
necessary to clearly indicate who is the sender and who is the receiver. This can be done
by including its identifier in the associated data of the message, or by relying on a strict
convention, such as messages alternating in the two directions.
The Motorist mode, being still based on the duplex construction inherits some interesting
features, which were already present in the original duplex construction:

• In-place encryption and decryption; the encryption/decryption operation coincides
with the absorbing operation of the sponge construction. This means that no buffer is
necessary and plaintext or ciphertext bits can be processed as they arrive. To preserve
this feature in the Motorist mode, the plaintext fragment is limited to the outer part of
the input blocks.

• Sessions; During a session, a tag of a message authenticates the full sequence of
messages since the start of the session and only a single nonce (if any) is required per
session.

• Authentication-only; the Motorist mode supports the (efficient) generation of tags
over messages consisting of additional data only (only authenticated but not encrypted).

• Stream-compatible; the Motorist mode does not require prior knowledge of the length
of plaintext, ciphertext or additional data.

• Word-alignment; the Motorist mode can be instantiated such that it processes data in
64-bit or 32-bit units, without the need for additional bit or byte shuffling.

• Universal; the Motorist mode can be applied to any fixed-length permutation with suf-
ficient width.

HECTOR D3.1 Page 12 of 129

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

Besides all the features listed above, the introduction of the Motorist mode allows to further
improve the algorithms, especially in term of efficiency. Specifically the new mode provides
additional features that increase the efficiency:

• It reduces the computational cost for short messages. The original duplex construc-
tion required at least two calls to the permutation f , for any (whatever short) message
composed of some plaintext: one call for absorbing the (possibly empty) additional
data and producing the key stream, and one call for absorbing the plaintext and pro-
ducing the tag. By supporting output blocks to be used partially as tag and partially as
key stream and supporting the combination of metadata and plaintext in a single input
block, this can be reduced to one call to f .

• It reduces the computational cost for long messages. Thanks to the result described
in [8], increasing the length of input blocks from r to b bits has no impact on the generic
security bounds that can be proven for the keyed sponge and duplex construction. This
allows absorbing up to c = b− r additional bits per call to f .

The new Motorist mode also provides additional features available at application level, which
make its use easier and more secure:

• Tag on session setup; the setup of a session can return a tag, or can be subject to a
tag. This means that when two communicating entities both start a Motorist session,
one of them can send the tag to the other party that can then set up the same session
on the condition that the tag it receives is valid (for the common SUV). The benefit is
that no unwrapping process can start unless a legitimate session is setup.

• Integrated forgetting; the mechanism that Motorist uses for making the tag depend
on the state of all duplex instances has as side effect that knowledge of the full state
does not allow the reconstruction of the state prior to the wrapping (unwrapping) of the
current message. It is also supported in the setup of a session and hence a key that is
loaded during session setup cannot be recovered from the state.

The Motorist mode, as specified in [29], consists of a layered structure, which, together with
the SUV needed for setup, ultimately explain the name of the mode. Three layers have been
defined, each one in charge of a specific aspect of the final security service. The layers are,
from bottom to top:

• Piston. This layer keeps an internal state defined over b bits and applies the permu-
tation f to it. It performs the basic functions such as absorbing data, encrypting or
decrypting, and extracting tags. It has a squeezing rate equal to the classical sponge
rate, and an absorbing rate that has the same width of the state.

• Engine. This layer controls Π ≥ 1 Piston objects that operate in parallel. It serves as a
dispatcher keeping its Piston objects busy, imposing that they are all treating the same
kind of requests. The Engine also ensures that the SUV and the message sequence
can be reconstructed from the sponge input to each Piston object and that each output
bit of its Piston objects is used at most once.

• Motorist. This layer implements the user interface. It supports the starting of a session
and subsequent wrapping and unwrapping of messages by driving the Engine.

HECTOR D3.1 Page 13 of 129

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

The layered structure just explained allows to derive security properties from the underlying
basic cryptographic primitives up to the applicative level. The effort of specifying the interface
up to the point of being directly and easily usable by the final application specifically aims at
preventing all the kind of issues and misuses the characterized many classical solutions for
both authenticity and confidentiality of data.

The KEYAK algorithm

There exist five instances of KEYAK, with different trade-offs from lightweight to very high
throughput. Each one is defined by specific fixed parameters, the underlying permutation,
and has corresponding security goals.
The permutations used in the KEYAK instances are named KECCAK-p permutations and
are directly derived from the original KECCAK-f permutations specified in the SHA-3 algo-
rithm from NIST [45]. They are iterated permutations, consisting of a sequence of rounds,
which is tunable. A KECCAK-p permutation is defined by its width b = 25 × 2`, with b ∈
{25, 50, 100, 200, 400, 800, 1600}, and its number of rounds nr. Namely, KECCAK-p[b, nr] con-
sists in the application of the last nr rounds of KECCAK-f [b]. When nr = 12+2`, KECCAK-p[b, nr] =
KECCAK-f [b].
In order to have a unique way to arrange the bits of the key into the SUV, the key pack has
been defined within the KEYAK specification. The key pack embeds the key and the other
unique values to be used for initialization, with a specific format and encoding. The key pack
consists of:

• a first byte indicating the full length of the key pack in bytes;

• the key itself;

• the required padding.

The key pack makes use of simple padding: pad10∗[r](|M |). This padding rule returns a bit
string 10q with q = (−|M | − 1) mod r. When r is divisible by 8 and M is a sequence of bytes,
then pad10∗[r](|M |) returns the byte string 0x01 0x00(q−7)/8.
More formally, for a key K, a key pack of ` bytes is defined as

keypack(K, `) = enc8(`)||K||pad10∗[8`− 8](|K|),

where the length of the key K is limited to 8(`− 1)− 1 bits and with ` < 256.
In general KEYAK makes use of MOTORIST[f,Π,W, c, τ], with f an instance of KECCAK-p.
Namely:

KEYAK[b, nr,Π, c, τ] = MOTORIST[f,Π,W, c, τ],

with f = KECCAK-p[b, nr] and W = max(b
25
, 8).

The SUV consists of keypack(K, `k)||N with `k = W
8

⌈
c+9
W

⌉
and N ∈ Z∗2 with no limitation on

its length.
Five different instances of KEYAK, have been specified in the submission to the CAESAR
competition. Each one is identified by the specific parameter values. Some parameter are
the same for all the five instances: the number of rounds (nr) is set to 12, the size of the
capacity (c) and then the associated level of security is 256 bits, while the size of the tag (t)
is 128 bits. Instead, the KEYAK variants differ for the size of the internal state (b) and the
number of multiple instances running in parallel, which both affect the final throughput of the
cryptographic primitives.

HECTOR D3.1 Page 14 of 129

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

Name b Π
RIVER KEYAK 800 1
LAKE KEYAK 1600 1
SEA KEYAK 1600 2
OCEAN KEYAK 1600 4
LUNAR KEYAK 1600 8

RIVER KEYAK can absorb up to 96 bytes of metadata per permutation call, or up to 68 bytes
of plaintext, with additionally 28 bytes of metadata. LAKE KEYAK can absorb up to 192 bytes
of metadata per permutation call, or up to 168 bytes of plaintext, with additionally 24 bytes
of metadata. For SEA, OCEAN and LUNAR KEYAK, these sizes are multiplied by Π for every
Π parallel calls to the permutation.
The security analysis of KEYAK is based on two main pillars:

• Generic security of the Motorist mode: see [29] for a detailed analysis;

• Security assurance from cryptanalysis of KECCAK: thanks to the Matryoshka property,
most analysis performed on KECCAK-f [1600] transfers to KECCAK-f [800].

KEYAK provides some features that advantageously compare with classical cryptographic
primitives such as AES-GCM. Namely:

• KEYAK supports sessions, differently from most authenticated ciphers, which work on
single messages. This means that besides single messages, KEYAK can ensure the
authenticity of a sequence of several messages within the same session. A new SUV
(key and IV pair) is required per session rather than per message.

• The simple structure of KEYAK results in improved hardware efficiency, when com-
pared with AES-GCM (which requires 2 separate cryptographic primitives) or AES-
CCM (which requires 2 calls to the same cryptographic primitive). Furthermore, KEYAK
is based on the same primitive as that of SHA-3, therefore allowing to re-use resources
when hashing is also needed.

• KEYAK offers robustness against side-channel attacks due to the Motorist construction
itself. In addition, the round function can be easily protected against different types of
side-channel attacks.

Further details about the underlying permutations, the encodings and the security goals of
the KEYAK algorithms and the Motorist mode can be found in the original submission to the
CAESAR competition [29].

2.3.2 KETJE

KETJE is a set of four AE functions with support for message-associated data. They aim at
memory-constrained devices and the nonce uniqueness is at the base of the security.
The original first version of the KETJE algorithm was submitted as candidate to the CAESAR
competition in 2014. KETJE has currently been accepted to the third round of the CAESAR
competition.
KETJE mainly targets lightweight use cases, using constrained devices. With this goal, all
the possible parameters of the algorithm has been scaled down as much as possible, while
still guaranteeing a good level of security.

HECTOR D3.1 Page 15 of 129

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

MONKEYDUPLEX and MONKEYWRAP

The MONKEYDUPLEX construction [27] is a toolbox aimed at building stream ciphers and AE
schemes. It uses a permutation f with a tunable number of rounds. The instance of f with
nr rounds is represented by f [nr]. Similar to the DUPLEX construction [30], the MONKEYDU-
PLEX is stateful and accepts calls taking a string as input and returning a string as output.
This output string depends on all inputs received so far. Unlike duplex, MONKEYDUPLEX
supports two types of calls that are different in the number of rounds of f executed between
input and output.
The MONKEYDUPLEX[f, r, nstart, nstep, nstride] construction works as follows:

• A MONKEYDUPLEX instance has a state of b bits, where b is the width of the underlying
permutation. It starts by initializing the state to the input string I, extended to b bits with
padding. Subsequently, it applies f [nStart] to it.

• A bit string σ of up to r − 2 bits can be processed for each call. After the bits are
injected, either f [nStep] or f [nStride] is applied to the state and the first ` bits of the state
are extracted, with ` ≤ r.

The MONKEYDUPLEX construction is illustrated in Figure 2.4.

Figure 2.4: The MONKEYDUPLEX construction.

MONKEYDUPLEX is meant to be used in a keyed mode. During its start-up it shall be loaded
with I containing a secret key and a nonce and during operation an attacker shall not have
access to the inner state.
The MONKEYDUPLEX construction can be used in several use cases; the most relevant in
the context of the HECTOR project is authenticated encryption. Similarly to the MOTORIST
mode of operation described in 2.3.1, authenticated encryption can be realized by specifying
how to arrange input and output data on top of the MONKEYDUPLEX. This mode of operation
is called MONKEYWRAP.
The authenticated encryption process is initialized by loading a key K and a nonce N . The
key and nonce are concatenated to form I and a new instance can start. From then on,
messages with associated data can be processed. Encryption is done by bitwise addition
with the output of the MONKEYDUPLEX. The inner state depends on all the messages and

HECTOR D3.1 Page 16 of 129

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

associated data presented to the MONKEYDUPLEX instance. The tag is the output of a MON-
KEYDUPLEX call. Note that MONKEYDUPLEX uses different operations when transitioning to
tag generation than in other cases.
Similar to MOTORIST, MONKEYWRAP supports sessions, allowing the processing of several
messages (each with associated data), where the tag for each message authenticates the
full sequence of messages rather than only the message to which it was appended. The
requirement of nonce uniqueness plays at the level of the session. Within a session, different
messages have no explicit message number or nonce. However, they must be processed in
order for the tags to verify. An alternative way to see this concept of session is that the mode
supports intermediate tags.

The KETJE algorithm

KETJE builds on KECCAK-p permutations, round-reduced versions of KECCAK-f , specified
in the SHA-3 algorithm from NIST [26]. KECCAK-p permutation has a tunable number of
rounds, and it is defined by its width b = 25× 2`, with b ∈ {25, 50, 100, 200, 400, 800, 1600}, and
its number of rounds nr. In particular, for KETJE the twisted permutation KECCAK-p∗ is used,
defined as

KECCAK-p∗[b, nr] = π ◦ KECCAK-p[b, nr] ◦ π−1,
where π is a step of one round of KECCAK-p (for more details on steps of the permutation,
see [26]). The purpose of this twist is to effectively re-order the bits in the KECCAK state, at
each round.
In KETJE specification [28], two different padding rules are considered:

• The simple padding, denoted pad10*[r](|M|), returns a bit string 10q with q = (−|M |−1)
mod r.

• The multi-rate padding, denoted pad10*1[r](|M|) returns a bitstring 10q1 with q = (−|M |−
2) mod r.

Moreover, for a key K, in [28] a key pack of ` bits is defined as

keypack(K, `) = enc8(`/8)||K||pad10∗[`− 8](|K|),

where the key K is at most (` − 9)-bit long and where ` is a multiple of 8 not greater than
255× 8. Then, the key pack consists of

• a first byte indicating its whole length in bytes;

• the key itself;

• simple padding.

In general KETJE makes use of MONKEYWRAP, calling KECCAK-p*. For all four instances,
the parameters of the MONKEYDUPLEX are fixed to nstart = 12, nstep = 1 and nstride = 6. In
order to increasing state sizes, the instances are:

Name f
KETJE JR KECCAK-p∗[200]
KETJE SR KECCAK-p∗[400]
KETJE MINOR KECCAK-p∗[800]
KETJE MAJOR KECCAK-p∗[1600]

HECTOR D3.1 Page 17 of 129

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

• KETJE SR is the more recommended by specification [28]. KETJE SR supports keys
K of variable length up to 382 bits and a nonce of length up to 382 − |K|. It is recom-
mended a key length of 128 bits, but higher key lengths can be adopted as possible
countermeasure against multi-target attacks.

• KETJE JR supports keys K of length up to 182 bits and a nonce of length up to 182−
|K|. It is recommended a key length of 96 bits, but higher key lengths can be adopted
as a possible countermeasure against multi-target attacks.

• The two last instances, KETJE MINOR and KETJE MAJOR, exploit the twisted permu-
tation KECCAK-p∗ to absorb more lanes per round. Both instances support keys K of
length up to b−18 bits and a nonce of length up to b−|K|−18. It is recommended a key
length of 128 bits, but higher key lengths can be adopted as a possible countermeasure
against multi-target attacks.

The basic philosophy behind the four KETJE proposals is to maximize the capacity by taking
a small rate and compensate the loss of performance by reducing the number of KECCAK-p
rounds in the steps calls to a single one, namely nstep = 1. It is important to observe that
the uniqueness of the nonce N is as critical for security as the secrecy of K. Indeed, users
are required to use the public message number N as a nonce, i.e., the cipher may lose
all integrity and confidentiality if the legitimate key holder uses the same public message
number N to encrypt the plaintext and the data under the same key K. More generally, here
the indications target the SUV. This means that if the size of the key does not reserve room
for the IV, it must be used only once.
KETJE has the following security assurance features:

• Generic security of the mode MONKEYWRAP.

• Security assurance from cryptanalysis of KECCAK.

KETJE provides some features that advantageously compare with classical cryptographic
primitive such as AES-GCM.

• KETJE JR, SR and MINOR have a small code and working memory footprint and they
require a relatively small amount of computation. KETJE MAJOR require similar amount
of operations per bit than KETJE MINOR and it is better adapted to exploiting 64-bit
CPUs.

• The implementation of the round function can be used also for the other symmetric
cryptographic primitives.

• KETJE offers robustness against side-channel attacks, both in hardware and software.
This is of particular importance for constrained devices and smartcards.

• Differently from most authenticated ciphers, KETJE supports sessions, and then se-
quences of messages can be authenticated rather than a single message.

2.3.3 ASCON

ASCON [49] is a family of authenticated encryption designs ASCON-128a,b-k-r designed by
Dobraunig et al. In August 2016, ASCON was selected as one of the candidates participating

HECTOR D3.1 Page 18 of 129

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

in round 3 of the CAESAR competition [126]. Like KEYAK and KETJE, ASCON is a sponge-
based design. However, ASCON targets slightly different use cases, which also motivates
a different permutation-based mode of operation. The ASCON family was designed to be
lightweight and easy to implement, even with added countermeasures against side-channel
attacks. It offers a good trade-off that is efficient in both hardware and software:

• ASCON’s small state and simple round function are well-suited for small implementa-
tions, without compromising on the full security of 128 bits. Existing lightweight imple-
mentations are as small as 2.6 kGE [70]. Comparison of implementation results in [60]
show that throughput per area of both ASCON variants is very good compared to many
other CAESAR candidates. ASCON is also among the fastest CAESAR candidates for
short messages according to current software benchmarking results[9, 20].

• The design of the permutation is well-suited for protected implementations to prevent
side-channel attacks. ASCON’s SBOX has a low algebraic degree of 2 and a low num-
ber of Boolean multiplications, which is well-suited for threshold implementations and
similar protection approaches. The bitsliced design means that straightforward soft-
ware implementations require no data-dependent table look-ups or other cache ac-
cesses.

• Compared to other sponge-based constructions, ASCON provides better robustness in
case of a potential state recovery, since both initialization and finalization are keyed
additionally. Furthermore, ASCON’s mode is compatible with alternative decryption
interfaces for secure implementations in memory-constrained settings [4].

Tunable parameters include the key size k, the rate r, as well as the number of rounds a
for the initialization and finalization permutation pa, and the number of rounds b for the in-
termediate permutation pb processing the associated data and plaintext. The recommended
key, tag and nonce length is 128 bits. The sponge state and permutation size is fixed to
320 = 5 × 64 bits. The designers recommend two variants, which inject message blocks of
64 or 128 bits, and vary in their number of rounds, as summarized in Table 2.1.

Table 2.1: Recommended parameter configurations for ASCON.

Name Algorithm Bit size of Rounds

key nonce tag data block pa pb

ASCON-128 ASCON-12812,6-128-64 128 128 128 64 12 6
ASCON-128a ASCON-12812,8-128-128 128 128 128 128 12 8

ASCON’s mode, illustrated in Figure 2.5 is inspired from duplex sponges, but uses a stronger
keyed initialization and finalization, which has advantages both from a security perspective
and for secure implementation in a low-memory crypto unit. The padding rule for plaintext P
and associated data A is similar to KECCAK:

P1, . . . , Pt ← padr(P) = r-bit blocks of P‖1‖0r−1−(|P |mod r)

A1, . . . , As ← pad∗r(A) =

{
r-bit blocks of A‖1‖0r−1−(|A|mod r) if |A| > 0

∅ if |A| = 0

HECTOR D3.1 Page 19 of 129

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

IV‖K‖N 320
pa

⊕

0∗‖K

c

⊕r

A1

pb
⊕

As

c
pb

⊕

0∗‖1

c

⊕r

P1C1

pb
c

⊕

Pt−1 Ct−1

pb
⊕

Pt Ct

r

⊕

K‖0∗

c

pa

⊕

K

k
T

Initialization Associated Data Plaintext Finalization

Figure 2.5: ASCON’s mode of operation.

The core permutation iteratively applies an SPN-based round transformation with a 5-bit
SBOX and a lightweight linear layer. All operations work in a bit-sliced manner on the 5× 64-
bit words x0, . . . , x4:

• A round-constant addition adds a round-dependent value to parts of register word x2.

• The nonlinear SBOX layer applies a 5-bit SBOX S 64 times in parallel in a bit-sliced
fashion (vertically, across words). This SBOX S applies the same 5-bit χ function
as KECCAK, but preceded and followed by an affine linear operation to improve its
differential and linear branch number.

• The linear layer uses an XOR of rotated copies of each 64-bit word for horizontal diffu-
sion within each word, with different rotation values r(1)i , r

(2)
i for each word xi:

xi := xi ⊕ (xi≫ r
(1)
i)⊕ (xi≫ r

(2)
i).

For a detailed specification, we refer to the design document [50].
ASCON is designed to provide 128-bit security (confidentiality and integrity of plaintext, as-
sociated data, and nonce), as long as the nonce N is never reused to encrypt two messages
under the same key. The decryption algorithm may only release the decrypted plaintext after
verification of the final tag. The number of processed plaintext and associated data blocks
protected by the encryption algorithm is limited to 264 blocks per key. For an overview of the
third-party analysis conducted for ASCON, we refer to the designers’ website [49].

2.3.4 PRIMATEs

PRIMATEs [6] is a family of single-pass nonce-based algorithms for AE, and a second-round
candidate in the CAESAR competition. Members of PRIMATEs are designed for constrained
hardware and they differ slightly to achieve various trade-offs between security and perfor-
mance.
The PRIMATEs family is defined by two parameters:

1. The security level denoted by s ∈ {80, 120} bits, which determines the sizes of the
binary state b, the rate r and the capacity c, as well as the permutation family PRIMATE-
s: {0, 1}b → {0, 1}b. This is summarized in Table 2.2

HECTOR D3.1 Page 20 of 129

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

2. The mode of operation ∈ APE, HANUMAN, GIBBON that selects between generic
constructs designed by following principles from the sponge methodology and MON-
KEYDUPLEX. The mode of operation determines the remaining parameters of the algo-
rithm (key length k, tag length t, nonce length n) and the subset of permutations from
PRIMATE-s (p1, p2, p3, p4), as shown in Table 2.3.

Table 2.2: Security levels of PRIMATEs family.
s = 80 bits s = 120 bits

b state size 200 bits 280 bits
c capacity size 160 bits 240 bits
r rate size 40 bits 40 bits
permutation PRIMATE-80 PRIMATE-120

Table 2.3: PRIMATEs modes of operation.
APE-s HANUMAN-s GIBBON-s

k key size 2s s s
t tag size 2s s s
n nonce size s s s
PRIMATE p1 p1,p4 p1,p2,p3

The PRIMATEs’s authors recommend the use of HANUMAN for lightweight authenticated en-
cryption, GIBBON for lightweight applications where speed is critical, and APE for lightweight
environments where additional security requirements are needed or security is critical. The
primary recommended security level is s = 120 bits, whereas s = 80 bits is suggested for
extremely lightweight applications.
The underlying permutation of PRIMATEs is called PRIMATE. It is designed according to the
wide trail strategy and its structure resembles the data transform part of the Rijndael block
cipher. The PRIMATE permutation operates on a 5× 8 (resp. 7× 8) state matrix composed
by 5-bit elements for PRIMATE-80 (resp. PRIMATE-120). The element in the ith row and
j th column of the state matrix is denoted by ai,j, where i ∈ {0, . . . , 4} (resp. i ∈ {0, . . . , 6})
and j ∈ {0, . . . , 7}. The first row a0,∗ in the state matrix contains the rate of the state, and is
henceforth referred to as the rate row. PRIMATE updates the state by using a sequence of
four transformations described as follows:

1. SubElements (SE) is the only non-linear transformation. It consists of an element-wise
permutation X → S(X) : {0, 1}5 → {0, 1}5 (SBOX) applied to each element of a state.

2. ShiftRows (SR) performs cyclical shifts of each row for a different number of elements.
Row i is shifted left by si = {0, 1, 2, 4, 7} in PRIMATE-80, or by si = {0, 1, 2, 3, 4, 5, 7} in
PRIMATE-120.

3. MixColumns (MC) operates on a state column at a time. It is a left-hand multiplication
by a 5×5 (7×7) Maximum Distance Separable (MDS) matrix. The matrices are chosen
in a way that allows recursive calculation of a smaller matrix five (resp. seven) times.

4. ConstantAddition (CA) modifies a single state element a1,1 by bitwise XOR-ing a 5-bit
constant in each round.

HECTOR D3.1 Page 21 of 129

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

Round constants are generated by a 5-bit Fibonacci LFSR. Varying on the sequence of
values sampled from this LFSR and the number of rounds, four permutations p1, p2, p3, and
p4 are derived from the core permutation (either PRIMATE-80 or PRIMATE-120), as shown
in Table 2.4.

Table 2.4: PRIMATE permutations.
PRIMATE p1 p2 p3 p4
Number of rounds 12 6 6 12
LFSR initial value 1 24 30 24

For more information about other slight differences between the different modes of operation,
we refer the reader to the official specification submitted to the CAESAR competition [6],
which details also the security claims and security analysis of PRIMATEs.

2.4 AE implementations in Hardware

2.4.1 Hardware interface

In the context of CAESAR competition professor Gaj from George Mason University (GMU)
has proposed a standard interface in order to benchmark the hardware implementations of
the different algorithms. This proposal was first called GMU hardware API and after some
discussions, in the CAESAR mailing list, it was officially adopted by the CAESAR compe-
tition and named CAESAR HW API. The purpose of this API is to perform a fair and easy
benchmark of the different proposals. For this reason, the interface is generic in such a way
that any submission can be measured in this framework. The consequence is that a primitive
based on a block cipher needs two separate inputs for data and key. On the other hand, most
of the primitives based on permutations use the key only at the beginning of the computation.
In order of being compliant to the API a dedicated port for the key is needed in any instances
and the wrapper would store the key in dedicated register. This implies a major amount
of resources and primitives based on permutation are somehow more negatively affected
in this context. In short, if the generic interface is used there is an overhead of resources.
Recently an improvement of the API for tackling lightweight use cases has been proposed
(DIA2016), the improvement is very good but still a dedicated API for specific algorithm is
preferable compared to a benchmark driven interface

2.4.2 KEYAK

In this subsection, we discuss about KEYAK implementations. The VHDL code of KEYAK
implementations is publicly available on github [22]. Since the target of KEYAK is high speed
and not implicitly low area, the overhead of the CAESAR HW API is not so problematic and
thus the implementation is compliant with it. In Table 2.5 we report the result for the RIVER
and LAKE variants of KEYAK. The other variants targeting parallelism are more interesting for
CPUs with multi core or SIMD instructions and less suitable for hardware implementations;
i.e. hardware implementations would have difficulty in sustaining the input throughout of the
2, 4 or 8 parallel cores. For this reason, we are not investigating these variants. Looking
at the results it is interesting to note that area for registers and for round logic are scaling
linearly between the RIVER and the LAKE proposal since the size of the permutation doubles

HECTOR D3.1 Page 22 of 129

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

Table 2.5: Implementation figures of different KEYAK ASIC hardware implementations using
the CAESAR hardware API. (Note that the core area includes overhead to be compliant with
the CAESAR hardware API.)

Version Area (full) Area (registersl) Area (round) Throughput
[kGE] [kGE] [kGE] [Mbps]

KEYAK RIVER 23.7 4.5 6 4500
KEYAK LAKE 52.5 7.5 12 11200

from 800 to 1600 bits. The overhead in the management of the API takes some area but
it remains reasonable. It is still possible to increase the throughput via round duplication
or triplication. Since the round represents 15 to 20 percent of the cost, we will have an
interesting improvement. These area figures are obtained using a 90 nm ST technology with
a clock speed of 100MHz, and in case of need the cores allow to increase the frequency.

2.4.3 KETJE

The Ketje algorithm is a proposal targeting lightweight systems. For this reason, it is inter-
esting to explore the implementations compliant with GMU API but also an optimized with
a custom interface. The custom interface is not only interesting for reducing footprint but
also for introducing additional functionalities. The mode presented with Ketje allows to adopt
session oriented streaming, thus the key and nonce are absorbed at the beginning of the
session and a sequence of packets can be elaborated inside a session without any need of
reusing the key. This session approach is not supported natively in the GMU API. Addition-
ally the underlying permutation can be used also for implementing a hash function and thus
basically have a complete proposal of symmetric cipher suite.

Table 2.6: Implementation figures of different KETJE ASIC hardware implementations using
the CAESAR hardware API. (Note that the core area includes overhead to be compliant with
the CAESAR hardware API.)

Version Area (full) Area (registersl) Area (round) Throughput
[kGE] [kGE] [kGE] [Mbps]

KETJE JR. 5.7 1.7 1.5 1600
KETJE SR. 9.7 3.3 2.7 3200

Table 2.7: Implementation figures of different KETJE ASIC hardware implementations using
a custom interface.

Version Area (full) Area (registersl) Area (round) Throughput
[kGE] [kGE] [kGE] [Mbps]

KETJE JR. v2 4.3 1.0 1.5 1600
KETJE SR. v2 8.3 2.0 2.7 3200
KETJE MINOR 17.4 1.5 6.0 12800
KETJE MAJOR 26.8 8.7 12.1 25600

The implementation compliant to the GMU API are related to the first version of the KETJE
proposal, thus related to the SR. and JR. versions only, while the implementations with

HECTOR D3.1 Page 23 of 129

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

a custom API are in line with the version 2 of the proposal with the two new members
KETJE MINOR and KETJE MAJOR. Synthesis results for ASIC with or without GMU API are
reported in Table 2.6 and Table 2.7 The KETJE SR. represent a very interesting trade-off in
terms of speed and limited requirement of resources. In order to increase the performances,
similarly to KEYAK, it is possible to instantiate more rounds executed in one clock cycle.
The interesting figure of KETJE is also the capability of processing one 32 bit word per clock
cycle, making it a perfect fit for embedded systems that are largely using a 32 bit architecture.
The instantiation of more rounds would increase the size of the data with the consequence
of requiring some sort of buffering. When comparing hardware with GMU or without GMU
interface it is possible to note that round logic costs are constant, as expected, while there
is a small increase in registers and a non-negligible increase for additional logic. From the
values in the tables, it is possible to see a cost increase of about 1.5 kGE, that is particular
annoying for the low-end version since it represents about 30% area increase.
Although the implementations are for an ASIC and not for a Microsemi FPGA, the implemen-
tation figures can serve as a first indicator which version is the best candidate for integration
on the target FPGA platform. HECTOR Deliverable D3.2 provides area figures for KETJE in
Microsemi FPGA.

2.4.4 ASCON

A number of hardware implementations can be found on the Ascon website[49]. All hard-
ware implementations are publicly available from github [51]. As in the case of KETJE, area
figures for ASCON in Microsemi FPGA are available in the HECTOR Deliverable D3.2. In
the following Table 2.8 we list the implementation figures of five versions of Ascon. Ascon-
fast 1 round is the reference with a rate of 128 bit and calculates 1 round per clock cycle.
Ascon-fast 2 rounds (Ascon-fast 4 rounds) calculate 2 (4) rounds per clock cycle to increase
the throughput. Ascon-64bit and Ascon-x-low-area have a rate of 64bit. Ascon-x-low-area is
designed for a small area footprint.

Table 2.8: Implementation figures of different Ascon ASIC hardware implementations using
a custom, lightweight interface. (1. . . Ascon-128a: 128bit rate; 2. . . Ascon-128: 64bit rate).

Version Area Throughput Power@1MHz
[GE] [Mbps] [µW]

Ascon-fast 1 round1 7320 7597 47
Ascon-fast 2 rounds1 10857 11232 74
Ascon-fast 4 rounds1 17991 16097 180
Ascon-64bit2 4990 72 32
Ascon-x-low-area2 2570 17 15

All the implementations listed in Table 2.8 use a custom and lightweight interface in order
to minimize the required resources. In order to compete in the CAESAR competition, it is
also required to use a specific interface, the CAESAR HW API. As already mentioned, this
interface ensures a high degree of flexibility, but it also adds a significant overhead in terms
of area. Comparing the area numbers from Table 2.8 and Table 2.9 shows that the CAESAR
hardware API adds additional 6kGE-8kGE in area. Therefore we conclude that a custom
interface is the better choice for the integration of the AE algorithm into the demonstrator.
Comparing the numbers from Table 2.8 (Area) and Table 2.9 (Area (core)) reveals that the
Ascon core for the CAESAR hardware API versions already requires more area compared to

HECTOR D3.1 Page 24 of 129

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

Table 2.9: Implementation figures of different Ascon ASIC hardware implementations using
the CAESAR hardware API. (Note that the core area includes overhead to be compliant with
the CAESAR hardware API.)

Version Area (core) Area (full) Throughput
[GE] [GE] [Mbps]

Ascon-fast 1 round 9680 13351 7326
Ascon-fast 2 rounds 13249 16920 11743
Ascon-fast 4 rounds 20380 24051 16675

the Ascon version including the custom interface. This is due to the additional features (e.g.
error handling) that have to be added to the core to be compliant to the CAESAR hardware
API.

2.4.5 PRIMATEs

As in all Sponge-based designs, the majority of implementation cost of PRIMATEs comes
from its core permutations. We have implemented round-based and serialized versions of
both PRIMATE-80 and PRIMATE-120. In the following, we denote each implementation by
P80-x and P120-x, where x indicates the number of cycles per round.
A brief description of each implementation follows:

• P80-1 and P120-1 correspond to the round-based architectures where all transforma-
tions (SBOXes, MDS matrix multiplications and constant addition) are implemented as
combinational networks, while the SR transformation is simply a rewiring of rows.

• P80-9 and P120-9 correspond to the 9 clock cycle serial implementation, where the
SRF has only two modes of operation: MC and SR. When MC is active SRF is con-
figured as a 25-bit FIFO register which feeds the data into the combinational network
at its output. This mode is used for data input, as well. SR mode is always active
during the first cycle of computation, during which it rewires the SRF to perform the SR
transformation.

• P80-41 and P120-57 serializes the MC step by performing the 5 (resp. 7) matrix mul-
tiplications in the MC transformation in 5 (resp. 7) clock cycles for PRIMATE-80 (resp.
PRIMATE-120).

• P80-16 and P120-16 correspond to the 16 clock cycle serial implementation where the
SR transformation is serialized instead of the MC transformation.

Table 2.10 shows the synthesis results of our PRIMATE implementations using Synop-
sys Design Compiler v2015.06 and 2 different standard-cell libraries: Faraday UMC 90 nm
(UMC90) and NangateOpenCellLibrary 45 nm (NAN45)). We have used Synopsys Prime-
Time v2015.06 with PX add-on to perform more accurate static timing analysis and switching
activity based power estimation. We also provide some figures at the operating frequency of
100 kHz.
Lastly, we have developed a co-processor architecture, which can be used for all PRIMATEs.
It is designed to be compatible with 8- and 16-bit processors and features a generic interface
(although different than the CAESAR HW API). We have used this interface to implement a

HECTOR D3.1 Page 25 of 129

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

Design Library Max. Freq. Area @ 100 kHz
T’put Impl. Eff’cy D. Pwr. S. Pwr. E. Eff’cy

[MHz] [kGE] [Mbit
s] [Mbit

kGE·s] [µW] [nW] [pJ
bit]

P80-1
UMC90 179.60 3.68 20.00 5.43 2.32 74.00 0.12
NAN45 341.53 4.72 4.24 1.63 83.30 0.09

P80-9
UMC90 256.74 1.43 2.22 1.56 0.74 29.80 0.35
NAN45 439.77 2.05 1.08 0.78 32.80 0.37

P80-16
UMC90 509.50 1.20 1.25 1.04 0.68 25.20 0.57
NAN45 896.38 1.78 0.70 0.42 27.60 0.36

P80-41
UMC90 204.18 1.32 0.49 0.37 0.46 26.70 0.99
NAN45 267.61 1.98 0.25 0.30 31.80 0.68

P120-1
UMC90 142.27 6.32 28.00 4.42 4.61 137.00 0.17
NAN45 281.31 8.23 3.51 3.65 159.00 0.14

P120-9
UMC90 183.69 2.17 3.11 1.43 1.26 46.00 0.42
NAN45 490.17 3.10 1.00 1.17 165.00 0.43

P120-16
UMC90 447.21 1.82 1.75 0.96 1.13 38.60 0.67
NAN45 722.33 2.69 0.65 0.80 42.60 0.48

P120-57
UMC90 114.32 1.87 0.49 0.26 0.63 36.80 1.37
NAN45 239.24 2.79 0.18 0.40 44.80 0.91

Table 2.10: Post-synthesis hardware implementation results of PRIMATE permutations.

complete design of HANUMAN-80 with the P80-9 core, which is the most efficient of all
serialized versions (at the cost however of increased area and power).

Figure 2.6: HANUMAN-80 coprocessor architecture.

The architecture of our design is depicted in Figure 2.6. We have used a Spartan-6 FPGA
(XC6SLX45-3CSG324) to implement and test this design, using an OpenMSP430 imple-
mentation from the popular MSP430 microcontroller family. On this platform the whole co-
processor fits in a total of 72 (1.06%) slices (206 FFs and 278 LUTs). In ASIC, using UMC90
standard-cell library, the entire coprocessor requires 2 kGE. Note that HANUMAN-80 compli-
ant P80-9 requires 1.69 kGE. The overhead of 0.26 kGE (18.68% larger than the raw P80-9
core of 1.43 kGE) includes all the glue logic; and entire control logic, including the FSM of the
coprocessor for fetching, decoding, and executing micro-instructions. An extra overhead of

HECTOR D3.1 Page 26 of 129

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

0.31 kGE is introduced for the 8-bit instruction unit and the 40-bit IF register, which enables
circular access to SRF in a block-pipeline manner, allowing to almost negligible interface
overhead.

2.5 Improvements towards Efficiency

We described in section 2.2 the fact that the same cryptographic primitive (i.e. the crypto-
graphic sponge construction) can serve different purposes and that it can be used for differ-
ent security services required by applications. We also showed that in order to instantiate
such a cryptographic sponge, only one main building block is necessary: a suitable permu-
tation (as defined in 2.2.1). This overall translates in the possibility to significantly improve
the efficiency of the security part of an application. This becomes clear when compared with
the set of previously available cryptographic tools, which needed to be combined together
when used in most of the current practical applications.

Efficiency benefits from the cryptographic sponge constructions in several tangible aspects.
First of all, of course, having a single primitive rather than several ones for different tasks
allows to save hardware resources. For instance, there is no more the need to put together a
symmetric cipher and a hash function in the same device. In essence, a single sponge-based
hardware IP can cover any security need, except for asymmetric cryptographic schemes and
for non-digital ones (e.g. TRNG, PUF).
In addition to that, since there is no more need to compose together different primitives to
accomplish a task, the possibility to insert vulnerabilities in the application is reduced. As a
warning, we explained in 2.1 for instance how the combination of encryption and MAC gen-
eration led to catastrophically undermine the security of some largely used communication
protocols. Besides pure security-related considerations, less building blocks translates in
simplified integration of these blocks together. Moreover, reduced complexity helps prevent-
ing inefficiencies in the system.

Such simplification positively affects different aspects of the system on two different dimen-
sions:

• from the high-level definition of a security scheme to its actual implementation;

• from the cryptanalysis of the underlying permutation up to the security analysis of the
whole system built on top of it.

For instance, in case of side-channel protections, security researchers can focus on refining
the protection of a single permutation, since it will then be used for a multiplicity of services.
In contrast, it would be much harder to build a system composed of completely different
primitives (e.g. AES and SHA-2-256) that is also balanced from the side-channel protection
viewpoint. The following chapters of this document will show how it can be possible to build
a side-channel protected primitive and how such protection can be evaluated at design-time.
One of the goals of the HECTOR project is to showcase the benefits in term of efficiency
and simplicity that can be brought to some practical use cases, such as the ones addressed
by the demonstrators 2 and 3 in the WP4.

HECTOR D3.1 Page 27 of 129

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

Chapter 3

System-level Vulnerabilities and
Countermeasures

In this chapter we discuss vulnerabilities and corresponding countermeasures for devices
working with confidential data. These confidential data can e.g. be memory content only
accessible to authorized parties or communication data encrypted with some secret key to
avoid eavesdropping. The goals of an attacker in the aforementioned scenarios are typ-
ically reading the confidential memory content or revealing the secret key that secures a
communication.
In Section 3.1 we start with some general considerations on side-channel attacks targeting
embedded devices and corresponding countermeasures.
Section 3.2 provides a state-of-the-art side-channel attack classification. In the first place,
this topic is discussed from a top-level view and then converges down to physical attacks,
which can be mounted if the attacker is in physical possession of the targeted device. This
subtopic is then further split into passive and active physical attacks. For active physical
attacks, we discuss one recently published attack, a so-called statistical fault attack targeting
authenticated encryption algorithms, in detail.
Section 3.3 discusses relevant countermeasures which allow to increase the security of a de-
vice against side-channel attacks. This section is split up into two parts. First, implementation-
level countermeasures are discussed in detail. This type directly modifies the implementa-
tion of cryptographic primitives for minimizing side-channel leakage. We also present a
recently published masking scheme. Second, the focus is put on protocol-level countermea-
sures. Here, the protocol itself is modified in a way to minimize the exploitable side-channel
leakage available to an attacker. In this context, we discuss an authenticated encryption
scheme inherently secure against passive side-channel attacks.

3.1 Rationale

A huge amount of electronic devices nowadays store and process confidential data. To
ensure the confidentiality and also the integrity of this data, well-proven and mathematically
secure encryption algorithms are applied. These algorithms allow to encrypt and decrypt
the data with a secret key. In order to get unauthorized access to the confidential data, the
key poses an interesting target for attackers. Especially in scenarios, where the electronic
device might be in physical possession of an attacker for a short period of time, special care
has to be taken when implementing the cryptographic algorithm.

HECTOR D3.1 Page 28 of 129

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

During the execution of the cryptographic algorithm the attacker can measure side-channel
information like power consumption or electromagnetic emanation. This side-channel leak-
age can then be used to reveal the secret key. In order to limit the exploitable side-channel
leakage, the implementation of the cryptographic algorithm can be equipped with counter-
measures. However, the increased security level does not come for free. Countermeasures
introduce additional overhead in terms of chip area, power consumption, runtime, and the re-
quirement for random numbers. Therefore, the integration of countermeasures is a trade-off
between intended security level and implementation overhead.

3.2 Attacks

In this section, we discuss important aspects of side-channel attacks, which have become a
busy research field during the last twenty years. For the industry, it is important to keep pace
with the evolution of always new attack strategies to guarantee the security of their prod-
ucts. For the remainder of this section we give a high-level classification of state-of-the-art
side-channel attacks. This high-level view is then followed by a more-detailed discussion of
passive and active physical attacks, which pose the most-serious threat within the HECTOR
project context.

3.2.1 Classification of Side-Channel-Attacks

Side-channel attacks exploit (unintended) information leakage of computing devices or im-
plementations to infer sensitive information. Starting with the seminal works of Kocher [82],
Kocher et al. [83], Quisquater and Samyde [109], as well as Mangard et al. [88], many
follow-up papers considered attacks against cryptographic implementations to exfiltrate key
material from smartcards by means of timing information, power consumption, or electro-
magnetic (EM) emanation. Although “traditional” side-channel attacks required the attacker
to be in physical possession of the device, different attacks assumed different types of at-
tackers and different levels of invasiveness. To systematically analyse side-channel attacks,
they have been categorized along the following two orthogonal axes:

1. Active vs passive: depending on whether the attacker actively influences the behaviour
of the device or only passively observes leaking information.

2. Invasive vs semi-invasive vs non-invasive: depending on whether the attacker removes
the passivation layer of the chip, depackages the chip, or does not manipulate the
packaging at all.

With the era of cloud computing, the scope and the scale of side-channel attacks have
changed significantly in the early 2000s. While early attacks required attackers to be in
physical possession of the device, newer side-channel attacks, for example, cache-timing
attacks [129, 134, 71, 61] or DRAM row buffer attacks [106], are conducted remotely by exe-
cuting malicious software in the targeted cloud environment. In fact, the majority of recently
published side-channel attacks rely on passive attackers and are strictly non-invasive.
With the advent of mobile devices, and in particular the plethora of embedded features and
sensors, even more sophisticated side-channel attacks targeting smartphones have been
proposed since around the year 2010. For example, attacks allow to infer keyboard in-
put on touchscreens via sensor readings from native apps [41, 11, 119] and websites [92],

HECTOR D3.1 Page 29 of 129

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

to deduce a user’s location via the power consumption available from the proc filesystem
(procfs) [93], and to infer a user’s identity, location, and diseases [137] via the procfs.
Although side-channel attacks and platform security are already well-studied topics, it must
be noted that smartphone security and associated privacy aspects differ from platform se-
curity in the context of smartcards, desktop computers, and cloud computing. Especially the
following key enablers allow for more devastating attacks on mobile devices.

1. Always-on and portability : First and foremost, mobile devices are always turned on
and due to their mobility they are carried around at all times. Thus, they are tightly
integrated into our everyday life.

2. Bring your own device (BYOD): To decrease the number of devices carried around,
employees are encouraged to use private devices to process corporate data and to ac-
cess corporate infrastructure, which clearly indicates the importance of secure mobile
devices.

3. Ease of software installation: Due to the appification [3] of mobile devices, i.e., where
there is an app for almost everything, additional software can be installed easily by
means of established app markets. Hence, malware can also be spread at a fast pace.

4. OS based on Linux kernel : Modern mobile operating systems (OS), for example, An-
droid, are based on the Linux kernel. The Linux kernel, however, has initially been
designed for desktop machines and information or features that are considered harm-
less on these platforms turn out to be an immense security and/or privacy threat on
mobile devices (cf. [136]).

5. Features and sensors: Last but not least, these devices include many features and
sensors, which are not present on traditional platforms. Due to the inherent nature
of mobile devices (always-on and carried around, inherent input methods, etc.), such
features often allow for devastating side-channel attacks [41, 11, 119, 92, 93, 137].
Besides, these sensors have also been used to attack external hardware, such as
keyboards [89, 138], and computer hard drives [32], to infer videos played on TVs [118],
and even to attack 3D printers [122, 76], which clearly demonstrates the immense
power of mobile devices.

Today’s smartphones are vulnerable to (all or most of the) existing side-channel attacks
against smartcards and cloud computing infrastructures. However, due to the above men-
tioned key enablers, a new area of side-channel attacks has evolved. The appification [3] of
mobile platforms—i.e., where there is an app for anything—allows to easily target devices
and users at an unprecedented scale compared to the smartcard and the cloud setting. Yet
again, the majority of these attacks are passive and non-invasive, which means that the exist-
ing side-channel classification system is not appropriate anymore as it is too coarse grained
for a systematic categorization of modern side-channel attacks against mobile devices.
We refer to [110] for an in-depth discussion of a new categorization system for modern side-
channel attacks on mobile devices. For the remainder of this document we keep the focus
of the discussion on traditional side-channel attacks (passive and active physical attacks)
which can be identified as the main threat within the HECTOR project context.

HECTOR D3.1 Page 30 of 129

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

3.2.2 Basic Concept of Side-Channel Attacks

Passive Side-Channel Attacks. The general notion of a passive side-channel attack can
be described by means of three main components, i.e., target, side-channel vector, and
attacker. A target represents anything of interest to possible attackers. During the computa-
tion or operation of the target, it influences a side-channel vector and thereby emits potential
sensitive information. An attacker who is able to observe these side-channel vectors poten-
tially learns useful information related to the actual computations or operations performed by
the target.
Active Side-Channel Attacks. An active attacker tries to tamper with the device or to mod-
ify/influence the targeted device via a side-channel vector, e.g., via an external interface or
environmental conditions. Thereby, the attacker aims to influence the computation/opera-
tion performed by the device in a way that leads to malfunctioning, which in turn allows for
possible attacks either indirectly via the leaking side-channel information or directly via the
(erroneous) output of the targeted device.
Figure 3.1 illustrates the general notion of side-channel attacks. A target emits specific side-
channel information as it influences specific side-channel vectors. This can be the physical
movement captured by a sensor of a device during an input on a touchscreen (e.g. password
input) or more traditional the power consumption or EM emanation of a device while execut-
ing some cryptographic algorithm. The relations defined via the solid arrows, i.e., target →
side-channel vector → attacker, represent passive side-channel attacks. The relations de-
fined via the dashed arrows, i.e., target ← side-channel vector ← attacker, represent active
side-channel attacks where the attacker tries to actively influence/manipulate the target via
a side-channel vector. By tampering with the supply voltage, the clock signal or by injecting
EM pulses, an active manipulation of the device can be achieved.

Figure 3.1: General notion of active and passive side-channel attacks. A passive side-
channel attack consists of steps (1) and (2), whereas an active side-channel attack also
includes steps (3) and (4).

3.2.3 Types of Side-Channel Information Leaks

Considering existing side-channel attacks on mobile devices, we identify two categories of
side-channel information leaks, namely unintended information leaks and information pub-
lished on purpose. Figure 3.2 depicts these two types of information leaks. Informally,
side-channel attacks exploiting unintended information leaks of computing devices can also
be considered as “traditional” side-channel attacks since this category has already been ex-
tensively analysed and exploited during the smartcard era [88]. For example, unintended
information leaks include the execution time, the power consumption, or the electromagnetic
emanation of a computing device. This type of information leak is considered as unintended

HECTOR D3.1 Page 31 of 129

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

Figure 3.2: Categorization of side-channel information leaks.

because smartcard designers and developers did not plan to leak the timing information or
power consumption of computing devices on purpose.
The second category of information leaks (referred to as information published on purpose)
is mainly a result of the ever-increasing number of features provided by today’s smartphones.
In contrast to unintended information leaks, the exploited information is published on pur-
pose and for benign reasons. For instance, specific features require the device to share
(seemingly harmless) information and resources with all applications running in parallel on
the system. This information as well as specific resources are either shared by the OS
directly (via the procfs) or through the official Android API.1 Although this information is ex-
tensively used by many legitimate applications for benign purposes2, it sometimes turns out
to leak sensitive information and, thus, leads to devastating side-channel attacks. The fun-
damental design weakness of assuming information as being innocuous in the first place
also means that it is not protected by dedicated permissions. Many investigations have
impressively demonstrated that such seemingly harmless information can be used to infer
sensitive information that is otherwise protected by dedicated security mechanisms, such
as permissions. Examples include the memory footprint [79] and the data-usage statis-
tics [123] that have been shown to leak a user’s browsing behaviour and, hence, bypass the
READ_HISTORY_BOOKMARKS permission.
Furthermore, the second category seems to be more dangerous in the context of smart-
phones as new features are added frequently and new software interfaces allow to access
an unlimited number of unprotected resources. Even developers taking care of secure im-
plementations in the sense of unintended information leaks, e.g., by providing constant-time
crypto implementations, and taking care of possible software vulnerabilities like buffer over-
flow attacks, inevitably leak sensitive information due to shared resources, the OS, or the
Android API. Additionally, the provided software interfaces to access information and shared
resources allow for so-called software-only attacks, i.e., side-channel attacks that only re-
quire the execution of malicious software. This clearly represents an immense threat as
these attacks (1) do not exploit any obvious software vulnerabilities, (2) do not rely on spe-
cific privileges or permissions, and (3) can be conducted remotely via malicious apps or even
websites.

1In the literature some of the information leaks through the procfs are also denoted as storage side-
channels [132].

2For example, the data-usage statistics, i.e., the amount of incoming and outgoing network traffic, is publicly
available for all applications.

HECTOR D3.1 Page 32 of 129

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

The HECTOR USB device is on the one hand also a mobile device with input (keypad) and
output (display) functionality, but the use is more restricted compared to smartphones. It is
e.g. not possible to launch user apps on the HECTOR USB device nor it is possible to read
sensor data. Therefore the most important attack scenarios are local side-channel attacks,
both passive and active, relying on unintended information leaks. These kind of attacks will
be discussed in the following sections in more detail3.

3.2.4 Passive Physical Attacks

Passive attacks only observe leaking information without actively influencing or manipulat-
ing the target. In the context of passive physical attacks one has to distinguish Simple
Power Analysis (SPA) from Differential Power Analysis (DPA). In an SPA scenario the attack
succeeds with a small number of measurements (maybe even with a single measurement)
while a DPA scenario requires a high amount of measurements (depending on the target this
number ranges from a few thousand to several billion measurements). Hence, DPA attacks
require the observation of a high number of executions using the same secret to succeed.
Below we survey some passive side-channel attacks that require a local adversary.
Power Analysis Attacks. The actual power consumption of a device or implementation
depends on the processed data and executed instructions. Power analysis attacks exploit
this information leak to infer sensitive information.
Traditional side-channel attacks exploiting the power consumption of smartcards [88] have
also been applied on mobile devices. For instance, attacks targeting symmetric crypto-
graphic primitives [13] as well as asymmetric primitives [63, 67, 16] have been successfully
demonstrated. Such attacks have even been conducted with low-cost equipment, as has
been impressively demonstrated by Genkin et al. [63]. Furthermore, the power consumption
of smartphones allows to identify running applications [133].
Electromagnetic Analysis Attacks. Another way to attack the leaking power consumption
of computing devices is to exploit electromagnetic emanations. Gebotys et al. [62] demon-
strated attacks on software implementations of AES and ECC on Java-based PDAs. Later
on, Nakano et al. [97] attacked ECC and RSA implementations of the default crypto provider
(JCE) on Android smartphones and Belgarric et al. [16] attacked the ECDSA implementation
of Android’s Bouncy Castle.

3.2.5 Active Physical Attacks

Besides passively observing leaking information, an active attacker can also manipulate the
target, its input, or its environment in order to subsequently observe leaking information via
abnormal behaviour of the target (cf. [88]). Most active attacks that require the attacker to be
physically present with the attacked device have been investigated in the smartcard setting.
Only few of these attacks are investigated on larger systems like smartphones.
Clock/Power Glitching. Variations of the clock signal, e.g., overclocking, have been shown
to be an effective method for fault injection on embedded devices in the past. One prereq-
uisite for this attack is an external clock source. Microcontrollers applied in smartphones
typically have an internal clock generator making clock tampering impossible. Besides clock
tampering, intended variations of the power supply represent an additional method for fault

3For the interested reader, all the other side-channel attacks which pose a serious threat for mobile devices
like smartphones, are discussed in detail in the work ”Systematic Clssification of Side-Channel Attacks on
Mobile Devices”, https://arxiv.org/pdf/1611.03748.pdf

HECTOR D3.1 Page 33 of 129

https://arxiv.org/pdf/1611.03748.pdf

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

injection. With minor hardware modifications, power-supply tampering can be applied on
most microcontroller platforms.
In [98] it is shown how to disturb the program execution of an ARM CPU on a Raspberry PI
by underpowering, i.e., the supply voltage is set to GND for a short time. Tobich et al. [127]
take advantage of the so-called forward body bias injection for inducing a fault during a
RSA-CRT calculation. Due to the relatively easy application on modern microcontrollers,
voltage-glitching attacks pose a serious threat for smartphones if attackers have physical
access to the device. This has been demonstrated by O’Flynn [101] for an off-the-shelf
Android smartphone.
Electromagnetic Fault Injection (EMFI). Transistors placed on microchips can be influ-
enced by electromagnetic radiation. EMFI attacks take advantage of this fact. These attacks
use short (in the range of nanoseconds), high-energy EM pulses to, e.g., change the state
of memory cells resulting in erroneous calculations. In contrast to voltage glitching, where
the injected fault is typically global, EMFI allows to target specific regions of a microchip
by precisely placing the EM probe, e.g., on the instruction memory, the data memory, or
CPU registers. Compared to optical fault injection, EMFI attacks do not necessarily require
a decapsulation of the chip, making them less invasive and thus more practical.
Ordas et al. [102] report successful EMFI attacks targeting the AES hardware module of a
32 bit ARM processor. Rivière et al. [113] use EMFI attacks to force instruction skips and
instruction replacements on modern ARM microcontollers. Considering the fact that ARM
processors are applied in modern smartphones, EMFI attacks represent a serious threat for
such devices.
Laser/Optical Faults. Optical fault attacks using a laser beam are among the most-effective
fault-injection techniques. These attacks take advantage of the fact that a focused laser
beam can change the state of a transistor on a microcontroller resulting in, e.g., bit flips in
memory cells. Compared to other fault-injection techniques (voltage glitching, EMFI), the
effort for optical fault injection is high. (1) Decapsulation of the chip is a prerequisite in order
to access the silicone with the laser beam. Besides, (2) finding the correct location for the
laser beam to produce exploitable faults is also not a trivial task.
First optical fault-injection attacks targeting an 8-bit microcontroller have been published by
Skorobogatov and Anderson [121] in 2002. Inspired by their work, several optical fault-
injection attacks have been published in the following years, most of them targeting smart-
cards or low-resource embedded devices (e.g. [130], [117]). The increasing number of metal
layers on top of the silicone, decreasing feature size (small process technology), and the high
decapsulation effort make optical fault injection difficult to apply on modern microprocessors
used in smartphones.
NAND Mirroring. Data mirroring refers to the replication of data storage between different
locations. Such techniques are used to recover critical data after disasters but also allow to
restore a previous system state.
The Apple iPhone protects user’s privacy by encrypting the data. Therefore, a passcode and
a hardware-based key are used to derive various keys that can be used to protect the data
on the device. As a dedicated hardware-based key is used to derive these keys, brute-force
attempts must be done on the attacked device. Furthermore, brute-force attempts are dis-
couraged by gradually increasing the waiting time between wrongly entered passcodes up
to the point where the phone is wiped. In response to the Apple vs FBI case, Skoroboga-
tov [120] demonstrated that NAND mirroring can be used to reset the phone state and, thus,
can be used to brute-force the passcode. Clearly, this approach also represents an active
attack as the attacker actively influences (resets) the state of the device.

HECTOR D3.1 Page 34 of 129

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

Temperature Variation. Operating a device outside of its specified temperature range al-
lows to cause faulty behaviour. Heating up a device above the maximum specified tempera-
ture can cause faults in memory cells. Cooling down the device has an effect on the speed
RAM content fades away after power off (remanence effect of RAM).
Hutter and Schmidt [77] present heating fault attacks targeting an AVR microcontroller. They
prove the practicability of this approach by successfully attacking an RSA implementation
on named microcontroller. FROST [96], on the other hand, is a tool for recovering disc
encryption keys from RAM on Android devices by means of cold-boot attacks. Here the
authors take advantage of the increased time data in RAM remains valid after power off due
to low temperature.

The Application of Fault Attacks Targeting Authenticated Encryption Algorithms

In this section, we want to summarize the outcome of the work “Statistical Fault Attacks on
Nonce-Based Authenticated Encryption Schemes”4. The results presented there are closely
related to the applied encryption mechanisms discussed in the previous chapter and are
therefore highly relevant for the HECTOR project.
In this work, first practical fault attacks on several nonce-based authenticated encryption
modes for AES are presented. This includes attacks on the ISO/IEC standards GCM, CCM,
EAX, and OCB, as well as several second-round candidates of the ongoing CAESAR com-
petition. All attacks are based on the Statistical Fault Attacks by Fuhr et al. [59], which use a
biased fault model and analyse collections of faulty ciphertexts. Hereby, we put effort in re-
ducing the assumptions made regarding the capabilities of an attacker as much as possible.
In the attacks, we only assume that we are able to influence some byte (or a larger structure)
of the internal AES state before the last application of MixColumns, so that the value of this
byte is afterwards non-uniformly distributed.
In order to show the practical relevance of Statistical Fault Attacks and for evaluating our
assumptions on the capabilities of an attacker, we perform several fault-injection experiments
targeting real hardware. For instance, laser fault injections targeting an AES co-processor
of a smartcard microcontroller, which is used to implement modes like GCM or CCM, show
that 4 bytes (resp. all 16 bytes) of the last round key can be revealed with a small number of
faulty ciphertexts.

Preliminaries. In 2013, Fuhr et al. proposed a new type of fault attack, called Statistical
Fault Attack (SFA) [59]. In contrast to most previous attacks, the adversary only requires a
collection of faulty ciphertexts encrypted with the same key. Hence, SFA works with random
and unknown plaintexts. The main requirement for this attack to succeed is that one or
several bytes of the state follow a non-uniform distribution after the fault injection. As the
practical results presented later show, this requirement is met on all our evaluated targets
with different fault-injection techniques.
For evaluating the non-uniformity of specific state bytes we apply the Squared Euclidian
Imbalance (SEI) distinguisher: Let s be the bitsize of our biased intermediate value Si =
f−1(K̂, C̃i), computed from the faulty ciphertext C̃i under the key hypothesis K̂. Assuming
that we have N faulty ciphertexts, the SEI d is calculated as:

d(K̂) =
2s−1∑
δ=0

(
#{i | f−1(K̂, C̃i) = δ}

N
− 1

2s

)2

.

4The full work can be accessed via https://doi.org/10.5281/zenodo.154485

HECTOR D3.1 Page 35 of 129

https://doi.org/10.5281/zenodo.154485

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

This distinguisher assigns high values to key hypotheses K̂ that lead to distributions of in-
termediate values Si with many collisions. For instance, consider a sample size of N = 2s

samples. Then, the SEI is essentially counting collisions, since only events that occur ex-
actly once do not increase d. Moreover, since the deviation from uniform is squared, a
greater deviation, or in our sense a multi-collision, contributes more to d.

Results of the Practical Fault Attacks. In order to demonstrate the practical relevance
of Statistical Fault Attacks, three fault-injection experiments targeting real hardware were
performed.
An AES-GCM implementation executed on an off-the-shelf microcontroller served as tar-
get for the first experiment. In this context, we used the ASM AES version from [104] to
realize the block cipher. Due to the lack of embedded platforms implementing GCM or
CCM completely in hardware, we put the focus of the following analysis on hardware AES
co-processors available on a smartcard microcontroller and on a general-purpose microcon-
troller, respectively. The remaining parts for realizing the authenticated encryption modes
are then implemented in software.
In all settings, the fault injections aim to induce a bias on at least one byte of the AES state
before the last MixColumns transformation, and allow to reveal 32 bits of the last AES round
key. For full key recovery, the attack has to be repeated three more times. The following
list provides an overview of the fault-injection methods and the attack results for the three
settings:

1. Clock tampering has been used to disturb the execution of the AES software imple-
mentation running on an ATxmega 256A3 general-purpose microcontroller. This set-
ting allowed to reveal 4 bytes of the last round key with less than 30 faulted ciphertexts.

2. Laser fault injections on an AES co-processor on a smartcard microcontroller. Our
experiments show that less than 16 faulty ciphertexts are sufficient to reveal 4 bytes of
the last round key.

3. Clock tampering on a hardware AES co-processor implemented on a general-purpose
microcontroller. In this setting, we need approximately 1 200 faulted ciphertexts for
recovering 4 bytes of the last round key.

For all attacks, 4 bytes of the last round key can be recovered out of the faulted ciphertexts
in less than one hour using an Intel Core i7 3770K. In the following, we give a detailed de-
scription and summary of the practical fault-injection attacks.

(1) AES Software Implementation on an 8-bit Microcontroller
In the following setting, we used clock glitches to provoke faults during an AES computation
implemented in software on an 8-bit microcontroller. In particular, we used the ASM AES
version from [104] for realizing the GCM AE mode.
For the clock-glitch experiments, we used a nominal clock frequency of 24 MHz (Tclk =
41.7ns). According to [104], one 128-bit encryption requires 2 555 clock cycles. For sim-
plicity, we used one general-purpose I/O pin of the microcontroller for indicating the start of
the AES encryption. This trigger pin together with the knowledge of the length of the AES
encryption procedure allows to find the correct time interval for inserting the clock glitch.
Next to that, our results show that faults in consecutive clock cycles also lead to successful

HECTOR D3.1 Page 36 of 129

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

key recovery. As a consequence, this behaviour allows to relax the precision prerequisite of
the trigger information.
With the found parameters, we collected two sets, each containing 80 faulty ciphertexts.
For the first set, a single clock glitch was inserted. For the second set, clock glitches in 50
consecutive clock cycles were inserted. Next, we performed SFA attacks using an increasing
number of faulty ciphertexts on both sets individually. The results containing the set size
N , the SEI value for the correct subkey (SEIc), and the maximum SEI value of the wrong
subkey guesses (SEIw) were stored in two separate lists (one list for each set) in the format
[N, SEIc,max(SEIw)]. For this attack scenario, we started with N = 4 and increased N in
every iteration by 4.
Figure 3.3 displays the evolution of the SEI values for increasing number of ciphertexts in
the single clock glitch setting. Values corresponding to the correct subkey are plotted in red,
the maximum SEI values of the wrong subkey guesses are plotted in blue. With 30 faulty
ciphertexts, SEIc exceeds max(SEIw), which allows to reveal the correct subkey value.

Figure 3.3: SEI values for correct key (SEIc) plotted against best SEI for a wrong key
(max(SEIw)) for increasing number of faulty encryptions. Setup: AES software implementa-
tion, single clock glitch.

Figure 3.4 displays the evolution of the SEI values for an increasing number of ciphertexts
for the setting with 50 consecutive clock glitches. In this setting, 24 ciphertexts are sufficient
for SEIc to exceed max(SEIw), which allows to reveal the correct subkey value.
Results of the fault attacks targeting the AES software implementations using clock glitches
show that with 30 faulty ciphertexts, it is possible to reveal the 32-bit subkey if a single clock
glitch is inserted. Furthermore, if the clock glitch is inserted in 50 consecutive clock cycles,
approximately 25 faulty ciphertexts are sufficient for subkey recovery. We did not further in-
vestigate the approach of inserting the clock glitch in consecutive clock cycles because this
is out of scope of the current work. Nevertheless, by carefully trimming the fault injection
parameters, the number of faulty ciphertexts for successful subkey recovery could probably
be further decreased.

(2) AES Hardware Co-Processor of a Smartcard Microcontroller
In this experiment, we used a laser fault injection system to induce faults during encryptions
of an AES Hardware co-processor of a smartcard microcontroller. This co-processor can
easily be used as building block for realizing authenticated encryption modes like GCM or
CCM on the smartcard.

HECTOR D3.1 Page 37 of 129

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

Figure 3.4: Evolution of the SEI values with increasing number of faulty encryptions. Setup:
AES software implementation, multiple clock glitches.

The laser fault injection system consists of an infrared laser diode module and a microscope
allowing to focus the laser spot depending on the microscope objective used. Here an ob-
jective with a 10×magnification is used. The whole system is mounted on a motorized X-Y-Z
stage.
As the smartcard microcontroller runs its own operating system, the only signal available
for triggering the laser injection system is the sending of the encryption command through
APDU command. Therefore, a temporal delay is added to postpone the laser injection during
the AES encryption thanks to a remotely controllable pulse generator. Furthermore, as the
smartcard microcontroller runs on its own internal clock network, an inherent temporal jitter
is present due to the asynchronism between the laser injection system and the smartcard
microcontroller clock network. These experimental conditions are very close to the ones
present in real world scenarios.
By applying a spatial fault injection cartography, we have been able to find a spatial position
where only one byte of the AES state is faulted. Furthermore, by trying different delays, we
found a spatio-temporal setting where only 4 bytes of the ciphertext were faulted with a high
reliability. By studying the indices of the faulted ciphertext bytes, we concluded that we suc-
cessfully induced a fault on one byte of the AES state just before the last MixColumns . The
fact that the hardware AES module can also be used outside of the context of authenticated
encryption, i.e., for encrypting single plaintext blocks, simplified this profiling. However, if
the stand-alone usage of the AES co-processor is not possible on the attacked platform, the
search for the right fault injection parameters becomes more complicated, but is still feasible.
With the found parameters, we collected again 80 faulty ciphertexts. With the collected faulty
ciphertexts, the same evaluation as in the previous section was conducted. We started again
with an initial attack set size N = 4 and increased the size of the attack set by 4 in every
iteration. The evolution of the SEI values with increasing set size is depicted in Figure 3.5.
Values corresponding to the correct subkey are plotted in red, the maximum SEI values of
the wrong subkey guesses are plotted in blue.
As depicted on Figure 3.5, SEIc already exceeds max(SEIw) with only N = 16 ciphertexts.
Therefore, this number of ciphertexts allows to retrieve 4 bytes of the correct last round key.
This result validates the practicability of the fault model and even shows that laser-based
fault injection systems are well suitable for this kind of attacks.

HECTOR D3.1 Page 38 of 129

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

Figure 3.5: Evolution of the SEI values with increasing number of faulty encryptions. Setup:
AES hardware co-processor of a smartcard microcontroller, laser.

(3) AES Co-Processor on a General-Purpose Microcontroller
In this setting, we use clock glitches to inject faults during the encryption procedure of an
AES co-processor integrated on a general-purpose microcontroller. This co-processor can
on the one hand be used as stand-alone block cipher to encrypt plaintext blocks, on the
other hand it can be used in the context of AE for realizing a mode of operation like GCM
or CCM. The co-processor in stand-alone mode allows profiling the hardware in order to
find suitable fault-injection parameters. The target of the fault injection is the output of the
byte substitution (SubBytes) in the 9th AES round. The AES co-processor implements the
SubBytes function with pure combinational logic. Since one column of the state is processed
in a single clock cycle, this allows to create faults in 4 bytes of the state with a single clock
glitch.
We define with Tglitch the time interval between two subsequent positive clock edges in case
of a clock glitch. This value is smaller compared to the nominal clock period Tclk, as illustrated
in Figure 3.6. If Tglitch is smaller than the path delay of the combinational SubBytes block,
the output value of this block has not settled to its correct, stable value. As a result, a wrong
value is sampled by the registers at the output of the block, which leads to faults in the
ciphertext.

clk Tglitch

Tclk

Figure 3.6: Clock signal with intentionally inserted additional positive clock edge.

For the clock glitch experiments, we used a nominal clock frequency of 10 MHz (Tclk =
100ns). Preliminary fault experiments allowed to find the correct clock cycle (i.e., the delay
between the start of the encryption and the targeted instruction) to disturb the SubBytes op-
eration in the 9th round before the MixColumns step. With Tglitch = 10.2ns, we achieved a
fault probability of 99.5 %.
With these parameters, we executed the AES encryption to receive 2 000 faulty ciphertexts.
The increased number of ciphertexts was required because preliminary experiments re-

HECTOR D3.1 Page 39 of 129

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

vealed that the bias introduced with the clock glitch was significantly smaller compared to
the bias introduced by the laser attack. With the collected faulty ciphertexts, the same eval-
uation as in the previous section was conducted. Due to a smaller bias, we started with an
initial attack set size N = 32 and increased the size of the attack set by 32 in every iteration.
The evolution of the SEI values with increasing set size is depicted in Figure 3.7. Values
corresponding to the correct subkey are again plotted in red, the maximum SEI values of the
wrong subkey guesses are plotted in blue.
As depicted on Figure 3.7, starting at 1 200 ciphertexts, SEIc exceeds max(SEIw). This al-
lows to reveal the correct subkey in an attack setting. Compared to the results presented
in the previous section, the number of required ciphertexts is nearly 100 times higher, but
the number is still practical and this amount of ciphertexts can be collected within minutes.
However, the effort for performing clock-glitch attacks compared to laser fault attacks (e.g.,
preparing the fault-injection environment, finding good fault-injection parameters) is signifi-
cantly smaller, which has to be taken into account.

Figure 3.7: Evolution of the SEI values with increasing number of faulty encryptions. Setup:
AES co-processor on a general-purpose microcontroller, clock glitch.

3.3 Countermeasures

In order to protect cryptographic implementations against side-channel attacks like the ones
discussed in the previous section, a variety of countermeasures have been proposed during
the last years. This section provides an overview of some of the most-popular countermea-
sures at the moment. We split this section in two main parts. In the first part, implementation
level countermeasures are discussed. This approach directly integrates the countermeasure
into the cryptographic implementation that needs to be protected. The second part deals
with protocol-level countermeasures. Here the protocol is modified in order to minimize the
amount of exploitable leakage available to an attacker.

3.3.1 Implementation-Level Countermeasures

One approach to achieve resistance against passive physical attacks is hiding in the time
domain [88]. This approach randomizes the order of sensitive operations from one execution

HECTOR D3.1 Page 40 of 129

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

to the next one. In addition, so-called dummy operations, which cannot be distinguished from
the sensitive operations, can be randomly inserted. In a DPA scenario, these techniques
make it hard for an attacker to find the point in time where the sensitive data is processed in
every measurement. Depending on the intended security level the degree of randomization
can be scaled. These countermeasures introduce a significant overhead in terms of runtime
(due to the insertion of dummy operations) and demand random numbers.
A second approach to achieve resistance against passive physical attacks is to make sensi-
tive computations independent from the processed data by using so-called masking schemes.
There exist many masking schemes, the scheme of Goubin et al. [69], or Ishai et al.’s private
circuits [78], and the Trichina gate [128]. However, the aforementioned schemes have been
shown to be vulnerable against glitches and thus rigorous care has to be taken during the
implementation to avoid this issue.
Basically, sensitive values are combined with masks at the beginning of the algorithm, and
the algorithm acts on these masked values. This means that any leakage observed by
the attacker will be related to the masked values, rather than the original sensitive values.
Of course the algorithm itself must be adapted in order to properly reconstruct the correct
(i.e. unmasked) result at the end. When a single sensitive value is protected only by a
single mask value, it is still possible for the attacker to overcome the countermeasure by
combining two leakages: one related to the masked value, and the other related to the
mask. This can be extended even when more than a single mask is involved, by exploiting
several leakages together. Because the attacker must consider more than a leakage, such
attacks are called high-order attacks. However, the more leakages must be evaluated, the
more complex and hard to apply in practice becomes the attack. For that reason the most
sophisticated countermeasures make use of several mask values at the same time.
There exist masking schemes that are inherently immune against glitches. The most pop-
ular scheme is the threshold implementation (TI) masking scheme introduced by Nikova et
al. [99]. It has been extensively researched and extended by Bilgin et al. [33, 35, 37] during
the last years. There exist many protected hardware implementations that are based on
TI [34, 36, 95].
Recently, Reparaz et al. [112] introduced the Consolidated Masking Scheme (CMS). One
interesting aspect of the CMS scheme is the possibility to reduce the number of required
input shares of TI from td + 1 to d + 1, where d corresponds to the attack order and t is the
algebraic degree of the function that should be protected. At CHES 2016, De Cnudde et
al. [44] demonstrated the suitability of using only d + 1 shares on an AES hardware design.
The design requires less chip area than related work, but at the cost of an increased random-
ness demand compared to td + 1 TI. More specifically, the CMS scheme requires (d+ 1)2

random bits for protecting one GF (2n) multiplication as required multiple times for the AES
SBOX.
Availability of random values is crucial for the efficiency of masked implementations and for
the effectiveness of the countermeasure. As shown in other Work Packages of the HECTOR
project, producing a high amount of random numbers in hardware, however, is not trivial.
In the remainder of this section we present the results of the work “Domain-Oriented Mask-
ing: Compact Masked Hardware Implementations with Arbitrary Protection Order”5.

5The full version of the work ”Domain-Oriented Masking: Compact Masked Hardware Implementations with
Arbitrary Protection Order” can be found online at https://eprint.iacr.org/2016/486

HECTOR D3.1 Page 41 of 129

https://eprint.iacr.org/2016/486

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

Table 3.1: First-order secure AES-128 implementation results.
Design/Module Chip Area Randomness Cycles Throughput @0.1 MHz

[%] [kGE] [Bits/SBOX] [Kbps.]
Our Implementation (90 nm)

This work 100.0 6.0 18 246 52
SBOX 37.3 2.2
State registers 34.0 2.0
Key registers 21.0 1.3
Control, et cetera 7.7 0.5

td+1 Threshold Implementations (180 nm)
Moradi et al. [95] 11.0 / 10.8a 48 266 48
Bilgin et al. [34] 9.1 / 8.2a 44 246 52
Bilgin et al. [36] 8.1 / 7.3a 32 246 52

d+1 Threshold Implementations (45 nm)
De Cnudde et al. [44] 6.7 / 6.3a 54 276 46

a This variant uses the compile ultra flag which is not available in our tool chain.

An Efficient Side-Channel Protected AES Implementation with Arbitrary Protection
Order

In this work, an efficient side-channel protected AES hardware design is introduced. We
demonstrate how to achieve resistance against multivariate higher-order attacks in the pres-
ence of glitches for the same randomness cost as the private circuits scheme of Ishai et
al. [78]. Although our AES design is scalable, it is smaller, faster, and less randomness
demanding than other side-channel protected AES implementations. Our first-order secure
AES design, for example, requires only 18 bits of randomness per SBOX operation and
6 kGE of chip area. We demonstrate the flexibility of our AES implementation by synthesiz-
ing it up to the 15th protection order.

Implementation Results. All stated numbers are post-synthesis results for a 90 nm UMC
Low-K process with 1.0 V power supply and 0.1 MHz clock frequency (in accordance with
related work). Our designs are compiled with the Cadence Encounter RTL compiler ver-
sion v08.10-s28 1 and routed with Cadence NanoRoute v08.10-s155. Please note that in
general hardware results for different technologies, compiled and synthesized with different
tool chains are difficult to compare. Furthermore, the functionality implemented by different
modules is not always consistent with other implementations. The comparison of chip area
results with related work should therefore be seen under this premise. To make comparison
with our generic AES design easier for future work, we therefore decided on publishing the
source code online6.
Besides the area of the design itself, for a masked hardware design the required number of
fresh random bits is also crucial for the overall efficiency of an implementation.

First-order secure AES.
Table 3.1 compares our first-order secure AES hardware implementation with related work.
The d + 1 share designs of [44] with 6.7 kGE and our design with 6 kGE are smaller than
the td + 1 TI designs. The size difference mainly comes from the fact that td + 1 TI requires
at least three shares for securely calculating non-linear functions while the first-order d + 1

6DOM Protected Hardware Implementation of AES can be found at https://github.com/hgrosz/
aes-dom

HECTOR D3.1 Page 42 of 129

https://github.com/hgrosz/aes-dom
https://github.com/hgrosz/aes-dom

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

Table 3.2: Second-order secure AES-128 implementation results.
Design/Module Chip Area Randomness Cycles Throughput @0.1 MHz

[%] [kGE] [Bits/SBOX] [Kbps.]
Our Implementation (90 nm)

This work 100.0 10.0 54 246 52
SBOX 45.1 4.5
State registers 30.3 3.0
Key registers 18.7 1.9
Control, et cetera 5.9 0.6

td+1 Threshold Implementation (estimated [44] , 45 nm)
De Cnudde et al. [43] 18.6 / 14.9a 126 276 46

d+1 Threshold Implementation (45 nm)
De Cnudde et al. [44] 10.5 / 10.3a 162 276 46

a This variant uses the compile ultra flag which is not available in our tool chain.

share designs require only two shares.
In comparison with d+ 1 TI design [44] which requires 54 random bits per SBOX calculation,
our design requires with 18 bits only a third of its random bits. Nevertheless, our design
achieves the same throughput as the td + 1 TI design of Bilgin et al.with 52 Kbps for a 100
kHz clock and requires 14 bits less fresh randomness.

Second-order secure AES.
In Table 3.2, a comparison of our second-order AES design with other second-order secure
designs is given. In case of the td+1 TI design the chip area was estimated by De Cnudde et
al. [44]. Again, there is a noticeable gap between the td+1 share design with about 14.9 kGE
and the d + 1 share designs with about 10 kGE in terms of chip area resulting from the in-
creased amount of shares (five shares versus three shares). Considering the randomness
demand of the designs, our design requires 54 bits which is more than two times less than
the td + 1 design with 126 fresh random bits, and three times less than the d + 1 TI design
with 162 bits. In terms of throughput, our AES design requires 246 cycles instead of 276
cycles per encryption.

dth-Order AES.
The generic construction of our AES implementation not only allows the calculation of the
number of required fresh random bits of 9d(d+1), but furthermore it is possible to synthesize
the AES implementation for arbitrary protection orders by just changing one input parameter
of our hardware design.
Figure 3.8 shows the post-synthesis area results for the different components in relation
to the protection order. It can be observed that the state key and control logic require-
ments grow linearly with the protection order. The SBOX and the contained GF gates grow
quadratically. For the SBOX, the size increases from 37.4% for the first-order implementation
to about 78.5% for the 15th-order. The relative size of the state and key register decrease
from 34% and 21% to around 12.2% and 7.5%, respectively. The smallest amount of chip
area is spent on the control logic, which stays almost constant.

Side-Channel Evaluation. We analyse the resistance of our AES designs against side-
channel analysis attacks by applying leakage detection tests based on the methodology
proposed by Goodwill et al. [68]. In particular, we use a fix vs. random test in order to
assess whether the means of two sets of power measurements are different or not. To

HECTOR D3.1 Page 43 of 129

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

Figure 3.8: Area requirements absolute (left) and in percent (right) per protection order.

this end we collect a set A containing traces with a constant (unshared) input, and a set
B containing traces with randomly picked inputs. The so-called t value is calculated by
applying the Welch’s t-test according to Equation 3.1, where X denotes the sample mean,
S2 the sample variance, and N the number of samples in each set.

t =
XA −XB√
S2
A

NA
+

S2
B

NB

(3.1)

If the t value is outside the confidence interval of ±4.5 the null-hypothesis is rejected with
confidence greater than 99.999% for large sizes of N , i.e. indicating that the two sets are
distinguishable and thus highlighting the existence of side-channel leakage.
Our evaluation approach is quite similar to what is checked in the d-probing model. Instead
of using power trace values of, e.g., an FPGA implementation of our design, the t values
of each individual signal are recorded for a post-synthesis netlist of our AES design during
simulation. In comparison to an FPGA based validation this approach has three advantages:
(1) the signals are completely noise free, meaning that the distributions of each signal are
compared for both sets under perfect attacking conditions, (2) if any statistical differences
are found, the signals can be directly pin-pointed that fail the t-test, (3) if ASIC implementa-
tions are targeted, the synthesized netlist is closer to the final ASIC implementation than an
FPGA implementation.

First-order AES design.
The results of the first-order t-test for our first-order secure design are shown in Figure 3.9
(left) for up to one million traces. The t-value stays below the ±4.5 border as required by the
t-test to succeed. To demonstrate the soundness of our evaluation setup we also performed
a second-order t-test. However, for the second-order t-test in a bivariate attack setting, per-
forming individual t-tests for each signal separately is no longer feasible. The evaluation of
each signal combined with every other signal for different points in time would take too long.
Therefore, one single trace is calculated that sums up all signal transitions together. We then
combine in each case two trace points over centered product pre-processing for all points
in time within an eight clock cycles period (the delay of the SBOX). As expected the t-tests
fail with great confidence with t values clearly above the ±4.5 border even for just a hundred
traces.

Second-order AES design.

HECTOR D3.1 Page 44 of 129

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

Figure 3.9: First-order t-test (left) and second-order t-test (right) for first-order secure AES
design.

Figure 3.10: First-order t-test (left) and second-order t-test (right) for second-order secure
AES design.

The t-test for the second-order AES design are illustrated in Figure 3.10. The result for a first-
order t-test are on the left side and for the second-order bivariate t-test on the right. In both
cases the t-tests do not indicate any leakage. We thus conclude that our implementation
seems to be correct and secure in a bivariate second-order attack scenario.

3.3.2 Protocol-Level Countermeasures

Next to implementation level countermeasures, another approach to counteract side-channel
attacks is to change cryptographic protocols in such a way that certain types of side-channel
attacks cannot be performed at all on the underlying cryptographic primitive. Most protocol
designs aim at inherently preventing DPA attacks, which is the strongest class of passive
side-channel attacks. DPA attacks accumulate information about a cryptographic key by
observing multiple encryptions/decryptions of different inputs. The fact that different inputs
are used allows to extract keys very efficiently via statistical techniques like Bayesian dis-

HECTOR D3.1 Page 45 of 129

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

tinguishers [42] or correlation [39]. In case DPA attacks are prevented by the design of the
protocol, the basic approach thus is to limit the exploitable data complexity of the underly-
ing cryptographic primitive for each key by a certain number q (q-limiting [124]). The corner
case are 1-limiting constructions which are inherently secure against DPA attacks as they
allow attackers to just observe one input per secret key. Hence, attackers are restricted to
techniques like SPA which eventually leads to significantly lower overheads for the imple-
mentation of the cryptographic primitive.
Examples of the approach of inherently preventing DPA attacks are fresh re-keying [91, 90]
and leakage-resilient cryptography, which brought forth encryption schemes [107, 56] and
message authentication codes (MACs) [105].
While the schemes as such are quite different, the security of all the published schemes with
inherent protection against DPA attacks relies on two basic properties. First, the schemes
require a side-channel secure initialization with a fresh session key on every invocation.
Second, the schemes require that the information an attacker can learn by collecting side-
channel information about the session key is bounded [53]. These two basic properties do
not just guarantee side-channel security, but also result in designs that turn out to be quite
efficient for processing bulk data, since—besides the side-channel secure initialization—the
cryptographic primitive does not need to be protected using implementation-level counter-
measures.
In the work “ISAP – Authenticated Encryption Inherently Secure Against Passive Side-
Channel Attacks” [47] a novel symmetric authenticated encryption scheme that also relies
on these two basic properties is presented. The presented scheme provides significant im-
provements with respect to both properties. First, the authenticated encryption scheme can
be applied to settings where it is highly beneficial, or even required, to allow multiple decryp-
tions and verifications of the same ciphertext. Current schemes have not been designed
to be used in such settings. Second, it is shown that the parameters of permutation-based
cryptographic primitives provide a flexible tool to cope with the maximum tolerable leakage
of cryptographic schemes on an algorithmic level. For the remainder of this section we sum-
marize the two main contributions and results of this work. For the full version including all
details we refer to [47].

ISAP – Authenticated Encryption Inherently Secure Against Passive Side-Channel At-
tacks

Contributions. Schemes with inherent protection against DPA require a side-channel se-
cure initialization in order to obtain a fresh session key for every cryptographic operation.
Such session key k0 is typically derived from a pre-shared master key K using a nonce n by
means of a re-keying function g : (K,n) 7→ k0 that is carefully designed to prevent both DPA
and SPA attacks. The purpose of this secure initialization is to ensure that cryptographic
operations for different data inputs are always done using different keys. Hence, whenever a
party encrypts or authenticates data, a new nonce is generated to derive a new session key.
While this approach successfully prevents DPA on the party performing the encryption or
authentication (sender of a message), the situation is more challenging for the party per-
forming decryptions or verifications (receiver of a message). The reason for this is that the
decrypting party has no control of the nonce n. Therefore, an attacker might send arbitrary
messages to the decryption device using the same nonce n for all sent messages. This
behaviour results in different messages being decrypted using the same session key k0. As
a result, decryption is vulnerable to DPA, and more concretely, it is the multiple decryption

HECTOR D3.1 Page 46 of 129

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

with the same session key k0 that causes this DPA vulnerability. In order to prevent this kind
of DPA attacks, the receiver either needs to be protected by other means [91], or all commu-
nicating parties are required to contribute to the nonce that is used to derive the session key
from a pre-shared master key [90].
In our first contribution, we overcome this problematic situation and present a symmetric
authenticated encryption scheme that does not have any special requirements on the initial-
ization and the nonces. In fact, with respect to both usage and requirements, it is a standard
nonce-based symmetric authenticated encryption scheme that fulfils all functional require-
ments of the CAESAR call [126] and at the same time provides inherent protection against
DPA attacks for all involved parties, i.e., also the decrypting party. This is achieved by making
the initialization of the authenticated encryption scheme depend on the processed message
itself. This implicitly prevents DPA attacks and enables several new use cases. In particular,
the scheme remains secure in settings that allow multiple decryptions and verifications of
the same ciphertext. Such settings cannot be realized with existing schemes, as they would
require fresh nonces for every encryption and decryption.
Our second contribution is that we show how permutation-based designs can be used in
order to scale implementations for different leakage bounds. Essentially, we model the side-
channel leakage as part of the public output of the permutation. This allows us to adjust
the maximum tolerable leakage by varying the permutation parameters. Using this flexible
tool as a basis, we propose an efficient sponge-based variant of our authenticated encryp-
tion scheme and two novel permutation-based re-keying functions inherently secure against
DPA attacks. We instantiate the sponge-based authenticated encryption scheme ISAP using
KECCAK and present the results of its hardware implementation. This instance maintains
128-bit security in the presence of up to 16 bits leakage per permutation call, can be used
in settings of multiple decryptions and verifications, and yet has approximately the same
runtime and area requirements as state-of-the-art schemes. Put into numbers, the hard-
ware implementation using an UMC 130 nm technology consumes 14 kGE, takes 22.35µs
for secure initialization, and performs authenticated encryption in roughly 0.15µs per 128-bit
block.
All these properties make ISAP suitable for a set of highly relevant settings in practice. One
prominent example is the decryption and verification of firmware images or FPGA bitfiles,
which requires that it is possible to do multiple decryptions and verifications with the same
session key by different parties. There is one party that encrypts and authenticates the
image or bitfile once and there are many devices that decrypt and verify it. Another example
is the bulk storage of data. In such scenario, the goal is to encrypt and authenticate once
and to allow multiple decryptions and verifications without the need to re-encrypt the data
upon every read operation. These scenarios again highlight the main benefit of ISAP over
existing schemes: ISAP remains secure in all these settings allowing for multiple decryption
and verification and simultaneously has practical implementation cost.
As described in Chapter 2, the versatile sponge construction has been adopted in the de-
sign of various cryptographic primitives, e.g., in authenticated encryption (AE) designs for
the ongoing CAESAR competition. Besides their flexibility, permutation-based constructions
also offer a convenient way to deal with bounded SPA leakage.
In the following, ISAP – an authenticated encryption scheme inherently secure against pas-
sive side-channel attacks that solely relies on permutation-based primitives is introduced.
ISAP consists of both a sponge-based encryption scheme ISAPENC and a sponge-based
authentication part ISAPMAC . ISAPENC was designed as a streaming mode since previous
work [107, 56] already suggests the high suitability of streaming modes to obtain encryption

HECTOR D3.1 Page 47 of 129

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

schemes secure against side-channel attacks.
On the other hand, ISAPMAC combines a re-keying function and a sponge-based MAC in a
novel way to obtain a MAC inherently secure against DPA with only one pass over the input
data. For the secure re-keying function, either a generic permutation-based construction,
ISAPRK1 , or a sponge construction, ISAPRK2 , can be used. ISAPRK1 is a design inherently
secure against DPA, whereas ISAPRK2 is a more efficient design based on a stronger side-
channel assumption.
Throughout this section, the side-channel discussion of the four ISAP primitives assumes
SPA secure implementations of the single components and focuses on DPA only.

Authenticated Encryption Mode. The sponge-based instances of the encryption part IS-
APENC and the authentication part ISAPMAC are now presented consecutively.

Encryption/Decryption.
The sponge mode to encrypt plaintexts, ISAPENC , is shown in Figure 3.11. It is an adapta-
tion of the streaming mode in [25], which is proven cryptographically secure in [8]. In contrast
to the “standard” sponge-based streaming mode in [25], ISAPENC uses a different session
key k1 for each new nonce n. This session key k1 is provided via the secure re-keying
function g1.

n

c0

iv
p

c

p

g1

K1

k1

p0

r p

c1

p

p1

cl-1

pl-1

Figure 3.11: Encryption part: ISAPENC .

Whenever a cryptographic primitive is frequently re-keyed, care has to be taken to preclude
generic time-memory trade-off (TMTO) attacks to recover the secret master key K1 [46]. To
avoid such attacks, ISAPENC uses both the session key k1 and the nonce n as inputs to the
first permutation call p. Hence, the design principle is similar to the fresh re-keying schemes
recently presented in [48].
The initialization with a fresh nonce n and a new session key k1 for each encryption en-
sures that the key stream is unpredictable and unique for different encryptions. Multiple
decryption of different ciphertexts with the same nonce n and session key k1 is inherently
prevented by the authentication part. DPA on the master key K1 is prevented by the use of
the (DPA and SPA) secure re-keying function g1 to initialize the streaming mode in ISAPENC .

Authentication/Verification.
The authentication part of the authenticated encryption mode consists of the following three
steps:

1. Hash the data to get y,

2. Use y to derive the data-dependent MAC session key k2, and

3. Compute the MAC with k2 to authenticate the data.

HECTOR D3.1 Page 48 of 129

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

Following this description, two cryptographic primitives, a hash function and a MAC, are
required. However, a suffix-MAC allows to virtually combine the hash function and the MAC
in one primitive. The result is ISAPMAC in Figure 3.12, a sponge-based suffix-MAC that is
inherently secure against DPA.

n

iv
p

t

c0

p p

cl-1

p

K2

p

y
g2
k2

Figure 3.12: Authentication part: ISAPMAC (not showing authenticated data).

Bertoni et al. [25] showed that one can always turn a sponge into a MAC by either putting the
key before (prefix-MAC), or after the message (suffix-MAC), as this always gives a pseudo-
random function as long as the sponge itself behaves like a random oracle. Compared to
a “standard” sponge-based suffix-MAC, ISAPMAC uses a secure re-keying function g2 to
absorb the secret key K2. Note however, that whenever a suffix-MAC is used, care has to
be taken with the choice of the parameters and the padding rule to preclude some generic
attacks [108].
ISAPMAC prevents DPA on the tag computation in two ways. First, and as shown in Fig-
ure 3.12, the MAC session key k2 is derived from the hash value y and the MAC master key
K2 via a secure re-keying function g2, thus prohibiting DPA on K2. Second, the design in-
herently prevents DPA on the MAC session key k2 by binding it to the data being processed,
thus leading to different MAC session keys k2 for different data.
A collision in the hash value y allows for two side-channel measurements of the MAC using
different data but the same MAC session key k2. This holds true for ISAPMAC as well. Yet, to
perform a successful DPA, usually more than two traces will be needed to recover one fixed
session key k2. Such a setting occurs with hash multi-collisions. The generic complexity for
finding a v-collision is v

√
v! · 2m(v−1). Luckily, the complexity is quite high already for small

values of v as shown in Table 3.3 for a 128-bit key. Furthermore, we want to stress that even
though a DPA attack exploiting multi-collisions might be able to recover the MAC session
key k2, this does not imply a key recovery attack on the master key K2 if a non-invertible
re-keying function g2 is used.

Table 3.3: Complexity for receiving a v-collision for a 128-bit session key k2.
v 2 3 4 5 . . . 34
complexity 264.5 286.2 297.1 2103.8 . . . 2128

Side-channel Secure Re-keying. Our authenticated encryption scheme requires two re-
keying functions g1, g2 : (K,n) 7→ k that are secure against passive side-channel attacks
(DPA and SPA). These two functions g1, g2 must not necessarily be distinct, but can be the
same. We now present two possible options to design such secure re-keying function allow-
ing to reuse the permutation p from our sponge instances ISAPENC and ISAPMAC . While
the first design is inherently secure against DPA attacks, the second design is 2-limiting.

Variant 1.

HECTOR D3.1 Page 49 of 129

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

In our first design, we use a variation of the classical GGM construction [66]. The respective
re-keying function ISAPRK1 is shown in Figure 3.13 and works as follows. The state is first
initialized with the padded master key K, followed by an application of the permutation p.
In each iteration, one bit of the nonce n is processed by either choosing the left or right
half of the permutation output, padding it to the permutation size, and again applying the
permutation p. Hereby, the padding incorporates information on which half was chosen and
on the index of the nonce bit being processed. After all nonce bits have been processed, the
session key k is generated from the last permutation output.

p

K

0

x0

y0

p

x1

y1

p

1

x1

y1

x0

1

y0

n0 ? ...

p

k

p

k

x|n|-1
y|n|-1

n|n|-1?

|n||n|

|n|

Figure 3.13: Re-keying inherently secure against DPA attacks: ISAPRK1 .

The approach to re-keying used in ISAPRK1 inherently protects against DPA attacks, since
the same secret (i.e., right or left part of the permutation output) is never combined with
more than one public input. In this respect, ISAPRK1 has a lower data complexity bound
than present GGM-based re-keying functions [56, 124] which are 2-limiting when instanti-
ated using common block ciphers [107].

Variant 2.
A more efficient re-keying function than ISAPRK1 can be obtained from sponges directly
similar to [125], potentially reducing the required state and permutation size. However, the
presented re-keying function uses a stronger security assumption than ISAPRK1 , namely,
that DPA is impossible on a 2-limiting primitive, i.e., given the leakages from two different
public inputs.
The basic idea is to make DPA infeasible by reducing the input data complexity accordingly.
For this purpose, a secret state is constantly updated with small portions of public data by
repeating two phases, (1) modifying the secret state according to the public data, and (2)
updating the state such that predictions on the future state based on the absorbed public
data become infeasible.
Sponges are an ideal choice to implement this basic idea as the rate directly influences the
input data complexity for each permutation. Choosing the smallest possible rate (r = 1) re-
sults in the design ISAPRK2 shown in Figure 3.14. ISAPRK2 first initializes the sponge state
by applying the initial permutation p to the padded master key K. Then, ISAPRK2 repeatedly
injects single nonce bits into the state, each separated by a permutation call. After full ab-
sorption of the nonce and a final permutation call, the session key k is output. This working
principle is similar to sponge instances of a prefix-MAC. While for general MAC computations
the absorption rate can be as big as the state size [27], ISAPRK2 uses a small absorption
rate in order to limit the data complexity exploitable in a DPA.
In terms of DPA security, ISAPRK2 uses a different assumption than the rest of this paper.
For each secret state in ISAPRK2 , a permutation p will produce the leakages for two different
public inputs. Thus, ISAPRK2 is not inherently secure to DPA attacks, but 2-limiting. This

HECTOR D3.1 Page 50 of 129

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

K

n0

0
p

c

1
nℓ-1

k

p p

1

Figure 3.14: Sponge construction for re-keying: ISAPRK2 .

results in ISAPRK2 being a secure re-keying function under the assumption that the com-
bined leakage resulting from the processing of two different public inputs is bounded such
that DPA on the secret state is infeasible.
However, note that this construction for a secure re-keying function is again related to the
classical GGM construction [66] and can be seen as their sponge equivalent. ISAPRK2 is
similar to it in the sense that the exploitable data complexity is equal for ISAPRK2 and the
block-cipher based instantiations of both [56] and the 2PRG primitive used in [124].

Instantiation and Implementation
For the practical use of ISAP we propose an instance based on the KECCAK permutation. It
provides 128-bit security in the presence of up to 16 bits leakage per permutation call. Our
parameter choices (permutation size, capacity, rate, number of rounds, etc.) are based on
state-of-the-art cryptanalysis results.
In terms of implementation cost, an UMC-130 nm implementation of ISAP with ISAPRK2 as
the re-keying function consumes merely 14 kGE, takes 22.35µs for all kind of initialization,
and performs authenticated encryption in roughly 0.15µs per 128-bit block. These hardware
results show that ISAP extends DPA resistance to settings allowing multiple decryption, re-
sists up to 16 bits leakage per permutation call, and yet yields performance and area figures
comparable to state-of-the-art schemes.

Table 3.4: Implementation results for secure re-keying functions (130 nm).
Function Area f Cycles Runtime

[kGE] [MHz] [µs]
ISAPRK1 8.5 172 2 709 15.8
ISAPRK2 7.7 212 1 677 7.9
AES-GGM [124] 11.2 101 1 536 15.2
PolyMult [91] 10.2 – 1 160 –

Table 3.5: Implementation of the AE modes (130 nm).
Function Area f Cycles Runtime

[kGE] [MHz] [µs]
ISAPAE-RK1 15.8 169 6 171 36.5
ISAPAE-RK2 14.0 171 3 853 22.5

These results suggest that ISAP is particularly suitable for the encryption and authentication
of bulk data, because the scheme does not pose any DPA requirements on the implementa-
tion of the cryptographic primitive.
An advantage of this approach is its flexibility. If at some later point the leakage of an existing
implementation turns out to be larger, one could simply reduce the rate r to retain the same
security level.

HECTOR D3.1 Page 51 of 129

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

In terms of our proposed schemes ISAPENC , ISAPMAC , and ISAPRK2 , our assumptions
can be straightforwardly applied. With respect to ISAPRK1 , the modelling works analo-
gously: the 2λ bits learned about the intermediate state account to the known part of the
state that without leakage consists of the padding bits. Thus, the size of the permutation p
used in ISAPRK1 has to be chosen accordingly to obtain a sufficiently large secret part to
maintain the desired security level in the presence λ-bit leakage of the permutation.

HECTOR D3.1 Page 52 of 129

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

Chapter 4

Side-channel-aware HW Designs

It should be clear from Chapter 3 that specifying cryptographic primitives with strong secu-
rity properties from the mathematical point of view is a fundamental first step, but it is not
enough for achieving robust devices in practice. Designing devices that demonstrate to be
robust against side-channel attacks once in the field is a challenging task. The information
exploited by these attacks are physical leakages that are not easy to predict at design-time.
Design methodologies do not always provide the level of detail required for a rigorous design-
time side-channel evaluation. Traditional design flows do not take into account side-channel
evaluation requirements.

We believe that there is the need from the industry to establish a side-channel-aware design
methodology in a similar way to methodologies for verification or low-power designs. Such a
methodology should help making design choices and it should allow to increase the design-
time confidence about the robustness of the resulting manufactured silicon devices. In this
Chapter we describe our attempt in this direction.
Specifically we addressed the problem from two perspectives.

• We introduce a top-down methodology based on Functional Languages. The main
goal here is closing the gap between the high-level specifications and the actual hard-
ware implementation. We aim at a reliable way to move from specifications to actual
implementations that allows to analyse countermeasures at high level and prevents the
insertion of unwanted vulnerabilities in the final designs.

• We propose a bottom-up approach able to model glitches on combinational logic,
which is one of the most critical sources of side-channel leakage in hardware imple-
mentations.

These two approaches are complementary to each other.

4.1 Functional Specifications of Cryptographic Circuits

4.1.1 Motivations

This part of work is motivated by a genuine concern about the functional properties exposed
by a cryptographic primitive once it has been implemented in hardware, especially consider-
ing side-channel and fault attacks, which are among the most effective practical threats.

HECTOR D3.1 Page 53 of 129

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

Nowadays, it is common to equip these primitives with additional circuitry to avoid side-
channel leakage of information and prevent fault attacks; however, the path from the spec-
ification of such countermeasures down to the hardware implementation is far from being
completely automatic. We know that manual refinement steps can be error prone and the
sheer potential of these errors can be devastating in a sensitive scenario. We thus set out to
identify formal tools whose purpose are to help us fill this gap.
In a broad sense, we are interested in automatic approaches that allow an automated path
from the initial specification down to the Register-Transfer Level (RTL) of the cryptographic
primitive under scrutiny.
This goal imposes requirements both to the expressiveness of our specification and to the
tools available to convert it into a hardware implementation. In our quest, we are thus par-
ticularly concerned about the following properties of the specification language:

• Rigorousness (internal consistency, non-ambiguity and completeness)

• Fluency and conciseness (construct-ability, manageability, communicability and evolv-
ability)

• Ability to prove or validate assertions about the system

• Ability to provide an automatic refinement framework down to the hardware level

Apart from the intrinsic scientific interest, we are looking for something that is acceptable
from an industrial perspective. Several other questions thus arise:

• Is the specification system flexible enough to incorporate changes, without disrupting
the development time-frame?

• Does the system require not-widely-available skills that would compromise a broader
industrialization?

• Is the specification of the system cost effective?

Although the term ‘specification’ might imply a declarative artefact describing what the sys-
tem should do, we are really looking for something that does not completely abstract away
from architectural details. Our ideal specification is rooted into the solution space rather
than the problem space. Moreover, it should provide a basis for further implementation and
guarantee that the produced artefacts present the same properties as the source.
Perhaps, the last point asks for a clarification; what do we mean with ‘same properties’? First
of all, we are interested into a bit accurate correspondence between important observation
points at both abstraction levels. These may include input and output signals of the primitive,
as well as signals that connect important internal blocks of the primitive. To completely define
our picture we also require a cycle-by-cycle correspondence between the values observed
at both levels of abstraction. Given the above definitions, it becomes increasingly clear that
we are looking for an architectural specification language.
Functional programming means writing programs (and hardware specifications) that are
side-effects free to the highest extent possible. An alternative way to define functional pro-
gramming is that programs written in this way become referentially transparent, i.e., function
evaluation can be substituted with the value of the computation itself (if known).
Why should we care in the design of cryptographic circuits? There are several observations
that can bring us to an affirmative answer; first of all, RTL descriptions lend themselves to be

HECTOR D3.1 Page 54 of 129

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

described by pure functions applied to a state and this is just what functional programming
languages do at their best. A by-product of this is that codes are easier to test, reason
about and compose, thus fewer bugs and more robustness.
Given their nature, functional languages lend themselves to be extremely effective in mod-
elling mathematical concepts (by using abstract data types). This allows us to reason at a
high level of abstractions without ambiguity, somewhat a holy grail of all hardware specifi-
cation languages. Besides, they stress and enforce strong type checking, as a means to
guarantee the correctness of function composition. They can go as far as providing a whole
arithmetic on types (in dependently typed languages), guaranteeing that certain assump-
tions are invariant throughout the code, otherwise the program will not even be parse-able.

4.1.2 The current state of cryptographic algorithm design

In the context of current, industrial high-level specifications, we typically deal with a decou-
pling of the specs with respect to the implementation. In fact, RTL design is done in a
separate step with respect to architectural specification design. This fact has several conse-
quences

• Manual translation can introduce subtle bugs and unanticipated behaviour

• It makes exploration of alternatives error-prone, time consuming and tedious

• Views generated at this level (e.g., test vectors, test benches, etc.) may not be in-sync
with the final implementation.

• It is usually done in weakly typed languages, additional source of unexpected be-
haviour

• It is difficult to test and refactor

We point out that, while the spec is written by a domain expert, RTL design might be done
by a different expert, who might not be experienced with domain-critic concepts. If anything,
this introduces another level of complexity in the interaction between members of the team.

Why functional programming

If a functional language were provided with an RTL back-end, part of these problems would
be easily solved; no more manual translation into RTL, efficient and productive spec design,
provably correct RTL correct code generation and robust spec composition.
Today there exist several options to produce RTL from functional programming languages.
In the rest of this document we will explore the alternatives and choose a solution to be used
in the rest of the work.

State of the art tools

In this section, we will analyse in detail which of the functional programming solutions avail-
able are suitable for specifying algorithms that are protected against side-channel attacks.

HECTOR D3.1 Page 55 of 129

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

A) Cryptol

• Sponsor/Developer: Galois, Inc.

• License Type: BSD

• Years active: 2013 - 2017 (now)

• Main website: Cryptol

Introduction. The Cryptol specification language was designed by Galois for the NSA’s
Trusted Systems Research Group as a public standard for specifying cryptographic algo-
rithms [55]. A Cryptol reference specification can serve as the formal documentation for a
cryptographic module.
Galois provides a comprehensive documentation of Cryptol on which this section is loosely
based. The original goals of the project were to (Galois docs):

. . . reduce the gap that currently exists between the specification of a crypto-
graphic algorithm and its executable implementation. As a result, a well-written
Cryptol program will look very much like the specification of the algorithm it im-
plements, and is also executable.

At first sight, it seems that Cryptol’s focus is on implementation correctness; in fact a great
deal of effort has been put into automatically proving thus formally verifying Cryptol programs
through the use of an SMT solver.
However, this is not the only way where a particular algorithm property can be checked.
Cryptol provides a way to check a property by random testing, just as Haskell’s QuickCheck
does. In fact, we have reason to believe that the underlying random testing tool is effectively
QuickCheck.

Basic Cryptol properties. Cryptol is a functional language closely related to Haskell (in
fact, it has been developed using Haskell libraries and modules). As such, there is a great
deal of focus on referential transparency and strong typing.

Bit level types. Being oriented towards specifying bit-level computations, Cryptol provides
one basic data type (bits) and three type constructors (words and sequences, tuples, and
records). For example:
12 : [8]

means the value 12 has type [8], i.e., it is an 8-bit word.

Strong typing. The language has fairly advanced type inference similar to other functional
languages and can catch most common mistakes in programming during the type-checking
phase, before run-time.
It is also size-polymorphic and dependently-typed. This means that we can describe type
level computations, in addition to value level computations, and that those can be checked at
compile time. For example, the bit-precise type system makes sure that we could never pass
an argument that is a-bits wide in a buffer that can only fit a/2 bits or take the first element
from a provably zero-length list.

HECTOR D3.1 Page 56 of 129

https://github.com/GaloisInc/cryptol/blob/master/LICENSE
http://www.cryptol.net/index.html
https://hackage.haskell.org/package/QuickCheck

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

Lazy computation, modular arithmetic. Cryptol is also a lazily evaluated language, where
it is possible to create and reason about potentially infinite sequences without incurring into
infinite loops. An additional interesting property of data-types is that all arithmetic is modular
with respect to the underlying word size. For example, we could define an infinite list of
numbers where the word length is 2, starting from one:

specifies
word length

Cryptol> [(1:[2])...]
[1, 2, 3, 0, 1 ...

This would effectively give a sequence of numbers modulo-2.

Stream equations. This feature of the language is akin to the execution of Synchronous
Data Flow Graphs. It is useful for generating bit-streams.
The following diagram depicts a bit stream named d whose values at times t = 0 and t = 1
are 0x0F and 0x01.

..

s(z)

.

z−1

.

z−1

.

d(z)

.
xor

..

0x01

.

0x0f

...

Figure 4.1: A simple synchronous dataflow graph. We use the Z-transform notation to indi-
cate time delayed signals.

The remaining d’s are given by s delayed by two cycles; s is given by:

s(z) = d(z)⊕ d(z)z−1

and a possible description in Cryptol language could be the following:

concatenation
d = [0x0F, 0x01] # s where

s = [a ˆ b | a <- d
| b <- d r o p {1} d]

A Cryptol description of an AES implementation. We will give a brief introduction to the
AES implementation as provided by the Cryptol documentation. As said at the beginning,
we are mainly interested into how Cryptol fares with respect to the following properties:

• Rigorousness (or internal consistency)

• Fluency and conciseness

• Ability to prove or validate assertions about the system

• Ability to provide an automatic refinement framework down to the hardware level

HECTOR D3.1 Page 57 of 129

https://github.com/GaloisInc/cryptol/blob/master/docs/ProgrammingCryptol/aes/AES.cry

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

We are pretty much convinced that the framework provides a reasonable rigorousness dic-
tated by its own type system. We will see in the next few paragraphs if it meets also the other
requirements.
The AES implementation is less than 250 lines long and is well founded above a mathemati-
cal description of the algorithm given directly in terms of Polynomials in GF (28). For example
we can describe a number either as itsGF (28) representation or as a bit-level representation:

Cryptol> <| xˆˆ4 + xˆˆ3 + x |>
26
Cryptol> 0b11010
26

Both polynomial addition and multiplication in GF (28) are defined and can be used directly
to describe the AES algorithm. Given this representation power, it is of no surprise the
conciseness with which the whole encryption is described at the top level. Here, for example,
we show how each round is described:

AESRound : (RoundKey, State) -> State
AESRound (rk, s) = AddRoundKey (rk, MixColumns (ShiftRows (SubBytes s)))

As can be seen, it actually exploits pure function composition to create the whole round from
each of the smaller stages.

Refinement towards hardware. Although it is mentioned that Cryptol can generate VHDL
(at least in its original version), it was not possible at the time of this writing to access that
particular part of the tool chain.
It has also been mentioned that the language has been used for co-verification of third party
VHDL IPs. Apart from the reference we did not find any other artefact to examine.

Side-channel countermeasures. There is no evidence that Cryptol has been used to
prove non-functional properties such as robustness with respect to side-channel leakage of
information.

Metric Evaluation (0-5) Notes

Rigorousness +++++ Given by the type system
Fluency +++++
Validation +++++ SMT/Quick check
Refinement towards hardware NA
Side-channel countermeasures NA
Flexibility +++
Widely available Skills +

B) Haskell - CλaSH

• Sponsor/Developer: Christiaan Baaij, University of Twente - NL

• License Type: BSD2

• Years active: 2013 - 2017 (now)

• Main website: CλaSH

HECTOR D3.1 Page 58 of 129

http://hackage.haskell.org/package/clash-prelude-0.10.3/src/LICENSE
http://www.clash-lang.org/

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

Introduction. CλaSH is a functional hardware description language [12]. It is based on
Haskell, a widely used functional language. According to the documentation, it provides:

. . . a familiar structural design approach to both combination and synchronous
sequential circuits. The CλaSH compiler transforms these high-level descriptions
to low-level synthesizable VHDL, Verilog, or SystemVerilog.

CλaSH is provided with a comprehensive guide and tutorial but requires some strong hard-
ware development skills. However, one of the most important characteristics of CλaSH is
that it is based on Haskell, and thus it comes with all the bells and whistles of a mature
programming language. Besides, it is fairly reasonable to find developers who have already
used Haskell, so the probability of a shortage of engineers with such skills is reduced.

Basic CλaSH properties. We can sum up the basic features of CλaSH in the following
list; we will go in a deeper detail in some of them to clarify how these could be useful when
developing cryptographic circuits.

• Synchronous signals. All signals described in a basic CλaSH circuit are implicitly
synchronous with respect to a system clock. A signal is just an applicative functor , i.e.,
a particular subset of standard Haskell types, which are equipped with some additional
operators. These operators specify how these types should be treated together when
transformed through a pure function. So, if we have a pure addition function:

add :: Int -> Int -> Int
add a b = a + b

and two signals, s1 and s2, we can create a dataflow version of an adder by applying
the function through its applicative functor interface:

adder :: Signal Int -> Signal Int -> Signal Int
adder s1 s2 = (pure add) <*> s1 <*> s2

• Base types. CλaSH allows to define types derived from some basic constituents,
such as Bit and Vectors but it also allows to use more trivial types such as integers to
describe the functionality of a circuit.

• Type-level natural numbers and type-level functions. One of the most useful char-
acteristics of Haskell is the use of a strong type system equipped with type inference.
These two features allow to put into the language additional constraints on the types
allowed by a particular function; it is in fact possible, to some extent, to mimic depen-
dently typed languages. Just as in the Cryptol case, this allows to detect at compile
time some erroneous operation such as taking the first element from a provably zero-
length list.

Describing synchronous circuits in CλaSH. Registers in CλaSH are typically inferred
by delaying signals. A signal can be delayed for 1 clock cycle by construction, applying a
register function to an already existing signal. The function has an additional parameter
that should be used to describe the value of the signal at time 0.

HECTOR D3.1 Page 59 of 129

http://hackage.haskell.org/package/clash-prelude-0.10.3/docs/CLaSH-Prelude.html
http://hackage.haskell.org/package/base-4.8.0.0/docs/Control-Applicative.html#t:Applicative

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

s1 :: Signal Int
s1 = fromList [1, 2, 3, 4]

s2 :: Signal Int
s2 = register 8 s1

..

1, 2, 3, 4

.

s1

.
z−1

.
s2

...
8

Figure 4.2: Using the CλaSH register function to create a simple synchronous circuit.

More complex finite state machines can be defined by using suitable constructors. For ex-
ample, the mealy function produces a finite state machine. A simple counter can be defined
by

• Defining the state as the current counter value

• Defining the next state function:

-- current next state
V V

next s () = (s + 1, s)
ˆ

-- output value

• Construct the state machine by invoking the mealy function (which requires the initial
value of the state):

counter :: Signal () -> Signal Int
counter = mealy next 0

We should point out that Haskell provides abstractions to deal easily with stateful computa-
tion. One of these abstractions is the State Monad.

Simulation. The Haskell interpreter (GHCi) can be used for high-level simulation of circuits
described in CλaSH. In our case, if we wanted to simulate our counter we could use the
simulate function:

myCircuitSim:: [Int]
myCircuitSim = Data.list.take 4 $ simulate counter [(), (), (), ()]

and invoke it in the GHCi command line:

>> myCircuitSim
[0,1,2,3]

HECTOR D3.1 Page 60 of 129

https://wiki.haskell.org/State_Monad

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

..

null

.

next

.

output

.

counter

.
counter initialized with 0

.

s

.

s

.

s + 1

.

Figure 4.3: A finite state machine created by using CλaSH’s mealy function.

Generating Verilog and VHDL. CλaSH comes with backends for generating both Verilog
and VHDL. The high-level synthesis is triggered by a specific flag on the command line.
The generated hardware blocks are isomorphic to function invocations on Signal types de-
rived from a topEntity symbol in the Haskell program; however, the synthesis step seems
to take care of avoiding resource duplication when possible.
Let us take back the hardware counter we saw in the previous section. To trigger a synthesis,
one has to specify a topEntity symbol:

topEntity :: Signal () Signal Int
topEntity = counter

In this case, the topEntity is just the counter. We then invoke the verilog (or alternatively
vhdl) synthesis on the command line:

> clash --verilog clash-test.hs

Verilog is then generated in a subfolder.

Test-bench generation. CλaSH can generate an HDL test-bench program as well. To do
this, we specify test vectors through two additional functions defined in the Haskell program,
called testInput and expectedOutput. Here, we could find the functions defined for our
counter, by using two helpers (stimuliGenerator and outputVerifier):

testInput :: Signal ()
testInput = stimuliGenerator $(v [(), (), (), ()])

expectedOutput :: Signal Int -> Signal Bool
expectedOutput = outputVerifier $(v [0, 1, 2, 3]);

AES Implementations in CλaSH. There is no evidence in our search about an AES ver-
sion described in CλaSH (with or without side-channel countermeasures). However, CλaSH
looks to be very useful to be used for this kind of task.

HECTOR D3.1 Page 61 of 129

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

Metric Evaluation (0-5) Notes

Rigorousness +++++ Given by the typesystem
Fluency +++++
Validation +++++ Quick check
Refinement towards hardware +++
Side-channel countermeasures NA
Flexibility ++++ Lots of reusable modules
Widely available Skills +++ Haskell is very well known

C) BlueSpec

• Sponsor/Developer: Bluespec, Inc.

• License Type: Commercial

• Years active: 2003 - 2017 (now)

• Main website: Bluespec

Introduction. The Bluespec language is part of a broader set of tools sold by Bluespec
Inc. The language (Bluespec’s website):

. . . simplifies hardware design expression and enables automatic generation of
control logic, accelerating development and eliminating many errors. The BSV
language and BSC compiler can be used to generate synthesizable Verilog RTL
from high-level models, verification IP, transactors and production IP.

Let’s dig a bit deeper into the claims.

Inner workings. Bluespec is based on Haskell. In fact, it incorporates Haskell-style poly-
morphism and overloading (typeclasses) into SystemVerilog’s type system. BSV also treats
modules, interfaces, rules, etc. as first-class objects, permitting very powerful static elabora-
tion (including recursion).

Static typing. Bluespec has static typing and can be used to define polymorphic data
types, just like Cryptol and Haskell. The compiler takes care of type usage consistency.

Synchronous circuits. A very peculiar feature of Bluespec is describing how state evolves
with time. This is done by using rules which describe when an action must be performed (a
guard) and what are the steps to be done. The latter describes an atomic action. Atomic
actions are the main tools with which Bluespec solves race conditions.
To make a more pragmatic decision of which actions should be scheduled in a certain clock
cycle, the scheduler employs some heuristics concerning rule ordering (one rule’s state
update is read by another rule in the same clock cycle) and access to resources. The authors
of the Bluespec language affirm that these constraints on rule firing are able to address most
questions about functional correctness.

HECTOR D3.1 Page 62 of 129

http://www.bluespec.com/

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

Existing AES Implementations. There exist several AES implementations in Bluespec
but none of them seems to implement any kind of countermeasures against side-channel
leakage of information.

Metric Evaluation (0-5) Notes

Rigorousness +++++ Given by the typesystem
Fluency +++
Validation +++++
Refinement towards hardware +++++
Side-channel countermeasures NA
Flexibility ++++ Lots of reusable modules
Widely available Skills +++ Not very well known

D) Other similar approaches A number of alternative approaches have been developed
in the past. Most of them are theme variations of Haskell.

D.1) Forsyde Haskell Forsyde stands for “Formal System Design” and it is implemented
as an Domain Specific Language implemented in Haskell [87][10]. ForSyDe systems are
modelled as networks of processes interconnected by signals and can be synthesized to
VHDL.
Forsyde makes explicit use of Template Haskell. The architecture of the circuit is in fact
modelled with Template Haskell expressions, which resemble Haskell expressions but are
translated at compile time into an intermediate form that is then used for the synthesis.
For example, the following declaration specifies a block that adds one to its input:

addOnef :: ProcFun (Int32 -> Int32)
addOnef = $(newProcFun [d|addOnef :: Int32 -> Int32
addOnef n = n + 1 |])

The [d| .. |] brackets enclosing the function declaration produce an AST (Abstract Syntax
Tree). Then, the AST is used by newProcFun to produce a representation of the actual circuit
description. It is important to note that everything happens at compile-time.
CλaSH seems much less verbose, since the same thing can be done by simply define a
pure Haskell adder function.
By comparison, here is a description of a counter described in Forsyde:

{-# LANGUAGE TemplateHaskell #-}
module Counter where

import ForSyDe
import Data.Int (Int32)
import Plus1 (addOnef)

counterProc :: Signal Int32
counterProc = out’
where out = mapSY "addOneProc" addOnef out’
out’ = delaySY "delayOne" 1 out

counterSysDef :: SysDef (Signal Int32)
counterSysDef = newSysDef counterProc "counter" [] ["count"]

HECTOR D3.1 Page 63 of 129

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

where the sequential circuit is implemented architecturally by using an explicit delay (delaySY)
and a feedback loop. The code seems more verbose than CλaSH but it provides the same
functionality.

D.2) (Kansas) Lava Lava [38] was an experimental system design to aid the digital de-
sign of circuits by providing a library for composing structural circuit descriptions. Kansas
Lava [64] is an evolution of Lava based on Haskell. Kansas Lava has the same basic build-
ing blocks for sequential circuits as CλaSH. For example, a register has the following type
signature:

register :: (Clock c, sig ˜ CSeq c) => a -> sig a -> sig a

The syntax for the constraint on the type of register (preceding =>) states there is a clock
called c, and there is a signal called sig, which is interpreted using this clock. It is just a way
to guarantee that both input and output signals are synchronized using the same clock.
Defining a register shows a tendency of Kansas Lava to describe architecturally synchronous
circuits:

counter :: (Rep a, Num a, Clock clk, CSeq clk ˜ sig) =>
sig Bool -> sig Bool -> sig a

counter restart inc = loop where
reg = register 0 loop
reg’ = mux2 restart (0,reg)
loop = mux2 inc (reg’ + 1, reg’)

Final considerations about functional languages

There is a great deal of recent work targeting the formal verification of countermeasures
against side-channel attacks. The major concern is to provide ways to assess whether an
existing specification does not leak sensitive data.
Concerning our view of the problem, we can articulate this macro-goal into at least three
goals to be achieved by using functional languages:

1. High assurance verification of the countermeasure. We would like to guarantee
that masking schemes devised in the specification are effectively implemented cor-
rectly in the RTL. We could imagine a “constructive” flow where an implementation is
constructed from the spec with automatic tools, just as it is possible with CλaSH.

2. Statistical verification of the countermeasure. We would like to guarantee that the
statistical properties of a particular primitive do not present side-channel information
leakage, even when we can assure that implementation followed correctly the spec.
This is a somewhat more important goal that can drive the exploration of new counter-
measures.

3. Specification supported by formal tools. In this case one could specify an algorithm
and have automatic tools to prove that the algorithm is safe from side-channel attacks.
As seen with Cryptol, formal languages can be coupled with an SMT solver to decide,
at development time, whether some formal property holds [54].

One thing to note is that the most advanced approaches seem oriented toward formal verifi-
cation of software with few, if any, applications to hardware. However, as noted in [15], type

HECTOR D3.1 Page 64 of 129

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

systems such as those provided in the above languages, are increasingly used to tag each
variable with its level of secrecy; for example, one could use security types to represent each
variable as either public or secret. Therefore, it seems plausible to pursue a similar approach
also for hardware.
Some very recent approaches towards information analysis at the hardware level have been
proposed (SecVerilog, [135]). While not specifically oriented towards protection against DPA
with SecVerilog, hardware designers specify hardware-level information flow policies by an-
notating wires and registers with security labels. Labels are expressed using a lattice of
security levels such that higher elements in the lattice correspond to information with more
restricted flow. An example of such a lattice could be: Unclassified < Secret < Top Secret.
Other approaches targeting a formalization of hardware information flow are Caisson [86]
and Sapper [85].

4.1.3 Implementing AES with CλaSH

In this section of the document, we will describe how some of the major features of the
Haskell programming language can be useful to write and test a cryptographic primitive to
be synthesized in hardware. Most of the presented techniques exploit both Haskell’s referen-
tial transparency and extremely mature type system to develop concise yet comprehensive
modules for designing hardware. In the following, we will target the construction of an AES
128 primitive by using Haskell and the CλaSH library [12].
For comprehensiveness, we restate below the goals of our research:

1. High assurance verification of the countermeasure. Guaranteeing that masking
schemes devised in the specification are effectively implemented correctly in the RTL.

2. Statistical verification of the countermeasure. Guaranteeing that a particular prim-
itive does not present side-channel information leakage.

3. Specification supported by formal tools. Formally proving that the algorithm is safe
from side-channel attacks.

Fundamental types

Types represent the domain of the discourse of every program and play an essential role
in our specification. For what concerns the cryptographic domain, the ability to create fixed
size vectors of bytes is fundamental to enable the construction of more complex primitives.
To achieve this goal, we first define an AESByte as the datatype that will be used to represent
unsigned, 8 bit (Unsigned 8) integers:
data AESByte = B { unByte::(Unsigned 8) }

deriving (Show, Eq, Bounded, Ord)

The previous code defines and states several properties about AESByte:

• A type constructor B, i.e. a function that given an unsigned integer (e.g. a literal) will
create a value of type AESByte. Type constructors are important because they can be
used to define functions by pattern matching.

• An accessor function unByte that returns the corresponding unsigned integer when
invoked on a AESByte.

HECTOR D3.1 Page 65 of 129

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

• AESByte inherits a number of properties of an Unsigned type, namely, it is an instance
of a number of basic type classes of the Haskell language.

To allow testing of blocks with arbitrary byte values (using QuickCheck) to automatically pro-
duce random values of type AESByte, we must create an instance of the Arbitrary typeclass
for AESByte:
instance Arbitrary AESByte where

shrink = shrinkIntegral
arbitrary = arbitraryBoundedIntegral

AES state and SBOX. The AES state is a vector of 16 AESBytes:
type AESState = Vec 16 AESByte

The type Vec is a type that encodes (i.e., is indexed) by an integer value that specifies (in
this case) the quantity of elements contained. It is a basic type of CλaSH that allows to
put constraints on the size of the data elaborated by the primitive. In this way, it is statically
possible to check for a consistent use of signals.
The AES SBOX type is built with the same principle:
type AESSbox = Vec 256 AESByte

AES input and output. Input data is fed to the AES primitive by with a type AESInput

isomorphic to a pair:
data AESInput = I { unIText::AESState, unIEn:: Bool }

deriving (Show, Eq)

where the first data is the plaintext (accessible with the unIText function), while the second
data is the value of a 1 bit signal (unIEn) which is high whenever a new plaintext should be
encrypted.
Analogously, the output type AESOutput of the primitive is composed of the encrypted text
and a boolean signal indicating when the output is ready.
data AESOutput = O { unOText::AESState, unOEn:: Bool }

deriving (Show, Eq)

Derived types. As one can imagine, we could define the type of the AES primitive as a
function from an input to the output:
topEntity:: AESInput -> AESOutput

however, this signature is missing some important information about the actual implementa-
tion i.e. both input and output are not just point values but represent a stream of correspond-
ing values one for each clock cycle of the circuit.
To express this additional information, we use the Signal CλaSH type level function (see
also Figure 4.4):
topEntity:: Signal AESInput -> Signal AESOutput

The Signal a function acts by constructing a recursive type which is a stream of data of type
a:

HECTOR D3.1 Page 66 of 129

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

IText

IEn

AES
OText

OEn

AESState

Bool

AESState

Bool

AESInput AESOutput{ }
Figure 4.4: Top entity of the AES Primitive .

data Signal a = Cons a (Signal a)

i.e., a stream is a value followed by a stream of the same type.

Top level modular architecture

The topEntity function is the top level block that is going to be synthesized.

The top entity. We define topEntity as a partial application of a function, called roundFsm

that returns another function; roundFsm in fact receives the internal secret key of the AES
and returns a fully instantiated topEntity; the key can be effectively seen as a compile time
constant:

AESState

Bool

AESState

Bool
roundFsm

Key

AES

Figure 4.5: topEntity inner modules. The key is wired in at compile time.

Architecturally, roundFsm is a finite state machine that computes AES encoding in a multi-
cycle fashion. We decomposed the rounds of the FSM by considering an ideal case with 16
SBOX that can be used in parallel.

Figure 4.6: Multicycle computation of AES cipher encoding.

HECTOR D3.1 Page 67 of 129

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

Multicycle round execution. Besides, we consider the round execution as being com-
posed of 9 equivalent rounds and two non-common ones. The 10th round in fact does not
apply mix-columns at the end, while the 11th round adds the final key.
The execution schedule of the multicycle AES can be seen in Figure 4.7.

Figure 4.7: Multicycle execution for each input data/plain text.

AES finite state machine. The registers of the finite state machine represent three sub
states:

• The round number: roundnum

• The current AES state (16 bytes): curtext

• The current key: curkey

During the first cycle (when IEn is true) the AESState is initialized to the plain text and the
key is memorized in the corresponding register. The round number is initialized to 1 as well.
In the remaining cycles, the next value of the three sub states (i.e., roundnum’, curtext’,
curkey) is computed by the next state function fan.

curtext

curkey

curkey’

IEn

roundnum

IEn

roundnum’

1

AESState

curtext’

IEn

next state
function

`fan`

curkey’

roundnum’

curtext’

Figure 4.8: Architecture of the finite state machine.

Definition of the state. Formally, the three substates are composed into a single record-
like state that we will call AESControl:

HECTOR D3.1 Page 68 of 129

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

data AESControl = AC {
_roundnum :: AESRoundNum,
_curtext :: AESState,
_curkey :: AESKey,

}

In the next sections, we will detail how the state is transformed throughout the pipeline.

The next state function. The next state function feeds the current key to both the keyschedule

and the round block, where the processing of the current AES state is done. The round block
is currently responsible for computing the next value of the AES State (and round number)
while the keyschedule generates the key to be used in the next round.

curtext

curkey

roundnum

round

key schedule

rndn'

state’

key’

Figure 4.9: Architecture of the finite state machine.

Modules for round computation

To provide the designer with a concise Domain-Specific Language for describing the round
function, we decided to use Haskell’s State monad.
The Haskell type State is a type function that describes functions that consume a state and
produce both a result and an updated state:

newtype State s a = State { runState :: s -> (a, s) }

where s is the type of the state, and a the type of the produced result.

State
: s

: a

: s

Figure 4.10: The State type.

In our case, we are mostly interested in the state that is carried over the round. We thus will
use the following derived type throughout the round:

type AESControlProcessor = State AESControl ()

where () is the unit type (i.e., a type that has only one habitant). Graphically, we can depict
the generic AESControlProcessor type as in the following picture:

HECTOR D3.1 Page 69 of 129

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

StateProcessor: AESControl : AESControl

: ()

Figure 4.11: The AESControlProcessor type.

Monadic description of the computation. To build the round processing, we use the
DSL provided by the State Monad abstraction. This is one of the major reasons we opted
for a monadic implementation, instead of a simpler one. In particular we will use the State
monad operator >> to combine state processing functions. The operator allows to sequence
actions, where an action, in our case, is the effect that each block produces on the state. For
example, to compose two blocks in the AESControlProcessor monad we use the following
notation:

example:: AESControlProcessor
example = b0 >> b1

the net effect of the >> sequencing operator is a single AESControlProcessor which can be
thought of as the concatenation of two simpler state processors, as shown in the following
picture.

: AESControl : AESControl

: ()

b0

: ()

b1

: ()

>>

Figure 4.12: Combining AESControlProcessors.

Note that, implicitly the blocks access the current state. The major benefit of using the monad
abstraction for AESControlProcessor is that the state is passed implicitly between one block
and another, making the language more concise.

Lenses. To simplify the construction of blocks that access AESControl, we will use some
of the combinators from the lenses library. In particular we will use the %= combinator which
takes a function changing a particular part of the state and transforms it into a fully opera-
tional AESControlProcessor. In our case, the state is composed of three fields:

data AESControl = AC {
_roundnum :: AESRoundNum,
_curtext :: AESState,
_curkey :: AESKey,

}

however, rounds are only concerned in modifying the _curtext which is the portion of state
that contains the actual AEState. We thus define a lift function as:

lift :: (AESState -> AESState) -> AESControl
lift f = curtext %= f

The %= operator:

• extracts curtext from the state

HECTOR D3.1 Page 70 of 129

https://github.com/ekmett/lens

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

• applies the function f

• “saves” the new result into curtext substate.

Beware that both the function curtext and the operator %= are defined by the lens library
through Template Haskell. In fact, the lens library generates automatically a number of
getters and setters for AESControl.
Finally, lift acts as a wrapper that allows to upgrade a function AESState -> AESState into
a fully fledged AESControlProcessor, as can be seen in the following diagram:

: AESControl
f

lift f

: AESState

: ()

Figure 4.13: The lift function.

Pipelined round execution. The round function is indeed the most important block of the
circuit. As we have seen previously, we can see it as a composition of sub-round blocks that
are lifted into a corresponding AESControlProcessor:

round :: AESControlProcessor
round = let

genround 11 k = ak k
genround 10 k = ak k >> sb >> sr
genround _ k = ak k >> sb >> sr >> mc in
get >>= \s -> genround (_roundnum s) (_curkey s)

where ak, sb, sr and mc are lifted version of add key, sub bytes, shift rows and mix columns
blocks. round is defined as a function that transforms the state based on the current round
and the current key. In particular:

• It gets the current state (get) to extract the current round number (_roundnum s) and
the current key (_curkey s).

• It invokes the genround function by passing the current round number and current key.

• genround actually returns a AESControlProcessor.

4.1.4 Comparison of AES HW designs

The goal of our research is producing an artefact that is suitable for industrialization. There-
fore, a lot of effort went into an experimental process aimed at evaluating the actual feasibility
of the circuits that are delivered by our new design methodology.
In the previous section, we have outlined the methodology of employing the Haskell func-
tional language, alongside the CλaSH compiler, as a means of producing correct specifi-
cations of hardware cryptographic primitives, meeting the desired functional specifications.

HECTOR D3.1 Page 71 of 129

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

: AESControl : AESControl

: ()

add k
>>

sb sr
>>

add k
>>

sb sr
>>

mc
>>

add k

for round = 10

for round = 11

Figure 4.14: The round function.

The output of our new design methodology is a circuit description, at the RTL level, of a cryp-
tographic hardware primitive. The CλaSH compiler is used to generate these descriptions in
a standard HDL, such as Verilog or VHDL, starting from the “functional” specifications.
This section aims at demonstrating that the introduced methodology can match the results
of hand-written (either in VHDL or Verilog) RTL implementations, in terms of the classic
non-functional figures of merit, when looking at the outcome of the logic synthesis process.
The target of our observations are the corresponding optimized gate-level netlists mapped
to a target technology library, proprietary of STMicroelectronics, implementing 90nm CMOS
standard cells. The expectation is ultimately to obtain synthesized netlists with comparable
performance and efficiency characteristics with respect to what can be achieved by tradi-
tional design methods.
For this reasons, we tested the new design methodology against a specific “reference imple-
mentation”, written by hand directly in structural VHDL. For this evaluation, we designed a
slightly optimized version of an (unmasked) AES-128 encryption primitive. The architectures
of the two designs have been kept as close as possible to each other, in order to support
this evaluation. The objective is to show the validity of the design flow from the point of view
of hardware designers.

The AES-128 Encryption design

We now describe the architecture used for our evaluation. In the previous section, we used a
basic cryptographic primitive, for the sake of illustrating the major features of Haskell/CλaSH
for circuits’ specifications. Nevertheless, now we will consider a slightly different architecture,
specifically tailored to our evaluation. Everything detailed below is valid for both the VHDL
as well as the Haskell/CλaSH versions. Notably, we enforced the same block interface, that
is, its input and output wires, along with an identical cycle-by-cycle protocol specification.
The circuit’s design is the implementation of an unmasked AES-128 Encryption primitive.
That is, we left out the decryption part of the algorithm in order to keep the design cleaner.
Since the AES decryption procedure is very similar to the encryption one, no special design
principle has been neglected in the Haskell/CλaSH specification.
With respect to the design described in the previous chapter, several details are different.
In particular, we introduced the input wires for the 128-bit key and we slightly improved the
block encryption latency. Hence, the block’s interface and the handshaking protocol have
now changed.
The design’s main features are:

HECTOR D3.1 Page 72 of 129

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

• AES-128 Encryption-only algorithm.

• Not pipelined, but rather employing just a simple block encryption. Each block encryp-
tion is performed in 10 clock cycles, one cycle for each AES round.

• Input interface: IText (128-bit plaintext), IKey (128-bit secret key), IEn (1-bit “start”
signal)

• Output interface: OText (128-bit ciphertext), OEn (1-bit “done” signal)

• 16 SBOX instances for the AES Round function, implemented as a simple lookup-table
(LUT).

• 1 SBOX instance for the KeySchedule function, also implemented as a lookup-table.

Other relevant implementation details, with respect with the previous design, are:

• The MixColumn block is implemented without the help of any lookup table, instead
an optimized combinatorial circuit is used for the required constant multiplications in
GF (28).

• The RCon block, used by the Key Schedule, is realized with a sequential logic circuit
synchronized by the main FSM — instead of employing a 10-elements LUT.

From an implementation point of view, we did not identify any particular difficulty when trans-
lating the design into a Haskell/CλaSH circuit specification. On the contrary, we found that
the Haskell/CλaSH approach allows to reliably describe a cryptographic primitive in a very
similar fashion with respect to traditional hardware description languages, while ensuring a
number of additional advantages, some of which were described in the previous section, and
which derive from the higher-order level of the specification.
In addition to the reference design, we also evaluated two modifications of the original archi-
tecture (which have been realized with Haskell/CλaSH as well), in order to demonstrate the
flexibility of the proposed methodology:

1. Composite field SBOX: an unmasked AES-128 Encryption primitive where all 17
SBOXes are realized by a GF ((24)2) composite field implementation (also known as
tower field, for more details see [131]). This should lead to a reduced area occupation,
whereas a penalty in terms of gate propagation latency is expected. In this case, the
Haskell/CλaSH specifications have been devised to allow the choice between the two
different SBOX types, through a simple compile-time flag.

2. 32-bit architecture: an unmasked AES-128 Encryption primitive performing each
round function only on 32-bit words per cycle. This means that such architecture needs
5 SBOX instances in total, one of which being reserved for the Key Schedule. There-
fore, a considerable area and power consumption reduction is to be expected. In this
case, we also wanted to test the refinement development cycle on the Haskell/CλaSH
platform, and evaluate how easy really is to perform a significant modification to an
existing design.

HECTOR D3.1 Page 73 of 129

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

Experimental validation

We explored the typical design trade-offs involving the synthesis of ASIC digital circuits. The
main aspects that we considered in our analysis are area occupation and power consump-
tion. Such figures of merit have been evaluated along a reasonable range of clock frequency
values for the 128-bit block encryption.
For our analysis, we set up a logic synthesis process, which involves the conversion of a
design high-level RTL description (either the one produced by Haskell/CλaSH or the hand-
written reference) into an optimized gate-level netlist, mapped to a target “technology library”.
In particular, we used a specific library of low power 90nm CMOS standard cells, designed
by STMicroelectronics. For the logical synthesis process we used Synopsys Design Com-
piler alongside a number of proprietary tools in place within STMicroelectronics, in order to
demonstrate the feasibility of the new methodology in an industrial setting with respect to
an established reference flow and, ultimately, to ensure the manufacturability of the resulting
netlist, when working under realistic constraints and design rules.

Comparison against the reference design. First, we compared the Haskell/CλaSH cir-
cuit specification against the VHDL reference design. Please recall that both designs share
the very same architectural choices. We report here some of the curves obtained, related
to the area occupations and the power consumptions of both designs, for the different clock
frequency values.

Figure 4.15: Area occupation diagram, VHDL reference vs. Haskell/CλaSH.

From the results in Figures 4.15 and 4.16, we could observe that:

• With respect the area occupation, the Haskell/CλaSH suffers from a slight but evident
overhead, which stays more or less constant along the frequency values range. The
measured mean value of such overhead is 1031.0 GE.

• The power consumption profiles of the two designs are, on the other hand, very close
to each other. The measured mean power overhead is 0.09118 mW. At the high-

HECTOR D3.1 Page 74 of 129

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

Figure 4.16: Power consumption diagram, VHDL reference vs. Haskell/CλaSH.

est frequency point, the Haskell/CλaSH version is even slightly better than the VHDL
reference implementation, consuming 0.0763 mW less.

Overall, we can see that the CλaSH compiler introduced a slight overhead, especially notice-
able in the area occupation measurements. Nevertheless, the results are quite encouraging
as the two netlists are not too far and the technology underlying CλaSH still has plenty of
room for improvement.

Inspecting the composite field SBOX implementation. After the first evaluation, we pro-
ceeded by modifying the architecture and by substituting the large 17 SBOX look-up tables
with an optimized combinatorial circuit that implements the AES inversion in a GF ((24)2)
composite field, as described in [131]. We then inspected the effect of the optimization on
the synthesized netlists, comparing the same figures of merit than before. Please note that,
since the combinatorial circuits that implement the composite field SBOXes have a much
higher propagation latency than LUTs, inevitably this architecture could not be synthesized
for all the clock frequency values as the original design. This is reflected in the missing points
in each of the two diagrams of Figures 4.17 and 4.18.
Here we observe a clear improvement in area occupation at 50 MHz, while there is no real
power consumption reduction. However, as the synthesis constraints become tighter with
the clock frequency increase, both area occupation and power consumption turn out to be
far worse than the original design. As expected, it is clear that the benefits of a solution with
composite-field SBOXes are appreciable only for lower clock frequency values (50MHz and
below in the used technology). Nevertheless, they are very important for the implementation
of protected primitives with masked SBOXes, allowing for a better robustness against side-
channel attacks.

Evaluating the 32-bit AES-128 architecture. Finally, we considered the 32-bit architec-
ture, which has been designed for area and power minimization, as it employs far less SBOX

HECTOR D3.1 Page 75 of 129

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

Figure 4.17: Area occupation diagram, original design vs. tower-field version (both in
Haskell/CλaSH).

Figure 4.18: Power consumption diagram, original design vs. tower-field version (both in
Haskell/CλaSH).

HECTOR D3.1 Page 76 of 129

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

Figure 4.19: Area occupation diagram, original design vs. 32-bit version (both in
Haskell/CλaSH).

Figure 4.20: Power consumption diagram, original design vs. 32-bit version (both in
Haskell/CλaSH).

HECTOR D3.1 Page 77 of 129

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

instances (5 versus 17). It has been implemented with the new Haskell/CλaSH methodol-
ogy as well. We compared such design against the original Haskell/CλaSH implementation.
Since the 32-bit design has a slightly higher propagation latency, it cannot reach the 250
MHz clock frequency mark, hence the corresponding point is missing in the two diagrams
of figures 4.19 and 4.20. Moreover, it should be noted that the following comparisons are
performed along a range of fixed clock frequencies, rather than throughput values: the spe-
cific 32-bit AES-128 implementation requires 5 times the number of cycles required by the
original 128-bit design to process 16 bytes.
In this case, the measurements confirm an overall gain in both area occupation and power
consumption by the 32-bit architecture with respect to the main design. On average, the
32-bit architecture is 5186 GE smaller and consumes 1.0950 mW less. At 225 MHz, which
is the maximum clock frequency reached by the 32-bit version, the area consumption gain
is however considerably reduced. In fact, such result was predictable: the logic synthesis,
when reaching a design’s latency limits, usually has much more constraints.

4.1.5 Implementing 1st order countermeasures in CλaSH

In this section, we will describe the implementation of a first order masking countermea-
sure with the CλaSH library [12] as an extension of the AES 128 primitive presented in the
previous sections. We will also provide an overview of the statistical verification of the coun-
termeasure by validating it at the Haskell source code level and some preliminary results
associated with the synthesis of the hardware primitive.

Description of the first order countermeasure

The first order countermeasure is characterized by a one byte mask (m0) that is replicated
and summed across all 16 bytes of the state. To avoid correlation attacks exploiting the non-
linearity of the SBOX, there is an additional byte mask m1 that is used to mask the output of
the SBOX.

m0 m1

roundnum curtext curkey

ROUND KEY SCHED.

Figure 4.21: Overview of the masked computation.

Formally speaking, the input to the SBOX is the signal

m0 ⊕ ki ⊕ si,∀i ∈ [1..16]

where ki is the i-th byte of the key while si is the i-th byte of the state. The corresponding
output is

m1 ⊕ SBOX(ki ⊕ si),∀i ∈ [1..16]

HECTOR D3.1 Page 78 of 129

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

where the signals ki and si have the same meaning as before. We will see later that the
design of the SBOX cannot expose any intermediate result while switching masks, so it must
be designed carefully.
A particular characteristic of our implementation is that mask m0 is an invariant of the state
at the output of the round; i.e., it is restored into the state in the latter stages after the SBOX.

key

state ⨁ ⨁ ⨁ LL ⨁

m0 SBOX

linm1
m1

Figure 4.22: Overview of the masked round.

Design of the state machine

With respect to the solution presented in the previous sections, the state representation has
been changed in order to include the current value of the masks and a number of probes:
data AESMasked = AMS {
#ifdef PROBE

_prbd :: AESProbed,
#endif

_roundnum :: AESRoundNum,
_curtext :: AESState,
_curkey :: AESKey,
_box :: AESSbox,
_ms0 :: AESMask,
_ms1 :: AESMask
}

type AESMaskedState = State AESMasked ()

In particular, the accessor methods _ms0 and _ms1 allow to access the actual value of the
masks whose type is a synonym for AESByte:
type AESMask = AESByte

The prbd field of the state is used to keep track of the information that flows within the state,
in fact its type is just a list of tagged texts (AESIProbed):
type AESProbed = [AESIProbed]

data AESIProbed = AIP {
__probedInnerText :: AESState,
__probedMsg :: String

}

The prbd field of the state is updated by a function in the AESMasked monad:
prm :: String -> AESMaskedState
prm m = get >>= addProbe where

addProbe s = (prbd .= prbd’) where
prbd’ = (AIP (_curtext s) m):(_prbd s)

HECTOR D3.1 Page 79 of 129

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

which adds the current text into the list of texts stored in the _prbd field. A probe function
will output these to stdout at the end of each round and eventually they will be used for the
statistical verification of the primitive.

FSM instantiation and round computation

The finite state machine now accepts a new parameter (of type AESMaskInfo) which is used
to pass in both masks and the SBOX:

roundFsm’ :: AESKey ->
Signal AESMaskInfo ->
Signal AESInput -> Signal AESOutput

roundFsm’ k mi t = formatOut <$> si where

si = register controlInit (choose <$> t <*> fan si mi)
controlInit = (_zero, (_zero, 0))

choose (I txt True) _ = (txt, (k, 1))
choose (I _ False) cs = cs

formatOut (s, (_, 12)) = O s True
formatOut (s, (_, _)) = O _zero False

data AESMaskInfo = AMI {
_mi_box :: AESSbox,
_mi_ms0 :: AESMask,
_mi_ms1 :: AESMask
}

Note that the SBOX passed into the finite state machine has been already preprocessed
by shuffling the original SBOX according to m0 and XORing all the elements with m1. The
round computation is still done through the fan function, which now receives also information
about masks to be applied. The result of the round computation is stored into the register
associated with variable si.
The fan function is simple:

fan :: Signal AESControl -> Signal AESMaskInfo -> Signal AESControl
fan si mi = let (s, ks) = unbundle si

(k, n) = unbundle ks
s’ = round <$> n <*> s <*> k <*> mi
ks’ = nextKey <$> ks
si’ = bundle (s’, ks’) in

si’

In fact, it unbundles the key k and the current state s from the input signal (si) and invokes
the round by using the applicative notation, because round is pure with respect to Signal:

round <$> n <*> s <*> k <*> mi

where n is the round number, s is the current state, k is the key and mi is the mask data.

Pipelined round execution. The round function is indeed the most important block of the
circuit. As we have seen previously, we can see it as a composition of sub-round blocks that
are lifted into the AESMaskedState monad:

HECTOR D3.1 Page 80 of 129

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

round’ :: AESMaskedState
round’ =

let
genround 11 k = ak k >> m0
genround 10 k = ak k >> sb >> lin’ >> m0 >> linm1’
genround 2 k = ak k >> sb >> lin >> m0 >> linm1 >> _po2
genround 1 k = m0 >> ak k >> sb >> _psb >> lin >> m0 >> linm1 >> _po1
genround _ k = ak k >> sb >> lin >> m0 >> linm1 in

get >>= \s -> genround (_roundnum s) (_curkey s)

where ak, sb, are, as in the previous version, lifted version of add key and sub bytes. Blocks
m0, lin, lin’, linm1 and linm1’ are added to functionally mask the circuit; they are defined
as:
m0 :: AESMaskedState
m0 = get >>= \s -> xorWith (replicate d16 $ _ms0 s)

lin :: AESMaskedState
lin = sr >> mc

lin’ :: AESMaskedState
lin’ = sr

linm1 :: AESMaskedState
linm1 = get >>= \s -> xorWith $ (mixColumns . shiftRows . replicate d16 . _ms1)

s

linm1’ :: AESMaskedState
linm1’ = get >>= \s -> xorWith $ (shiftRows . replicate d16 . _ms1) s

In practice lin, lin’ apply usual computations (shiftRows and mixColumns) while linm1 and
linm1’ remove effectively mask m1 from the computation, bringing back the state masked
only by m0.

Experimental validation - First order analysis

In this section, we are going to validate experimentally whether the first order countermea-
sure protects the circuit against attacks. The countermeasure is based on a byte mask that
is generated randomly.

Preliminaries. First of all, to guarantee the robustness of the following tests, we are inter-
ested into checking whether masks and keys used are effectively random. We thus instru-
mented the Haskell code to insert two probes in the first round (pm and pk) to profile both
masks and keys (see Figure 4.23).
Actually, the goal is twofold:

1. When observing probe pm we want to assess the uniform distribution of the actual
random generation of masks.

2. When using pk we want to make sure that the algorithm is stressed using arbitrary
keys.

The following diagrams are generated from data taken from Haskell simulations of the cir-
cuit. This information should be compared in all cases with the expected behaviour. Every

HECTOR D3.1 Page 81 of 129

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

Sbox Other+

mask0 = pm

state(0)

Sbox Other

+

key(0) = pk

+

key(1)

Preliminary probes
The countermeasure is instrumented to check
for uniformity of masks and keys

state(1)

state(2)

Figure 4.23: Probes in the first round.

deviation from it should be interpreted as a warning to be investigated. The following picture
is an histogram of mask values used during the experiments. The histogram should cover
uniformly all the possible values of a byte. As data samples go up, this should converge to
the same amount for all byte values (Figure 4.24).

0

3

6

9

0 100 200
mask value

k

Figure 4.24: Histogram of mask values.

What follows is the histogram of byte values used for the key. Again, the histogram should
cover uniformly all the possible values of a byte. As data samples go up, this should converge
to the same amount for all byte values (Figure 4.25).

0

50

100

150

0 100 200
key value

k

Figure 4.25: Histogram of key values.

Correlation between masked and non-masked state after the SBOX. In this first anal-
ysis we are interested in correlating the state after the SBOX with countermeasure against
the same state without countermeasure. We thus require that keys and input text are the
same (Figure 4.26).
We thus introduced two probes psbm and psb in the two implementations described above.
Both probes produce a stream of 16 bytes each. We are interested in the cross-correlation

HECTOR D3.1 Page 82 of 129

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

State after Sbox
We instrument the state after the SBox and we correlate it
with the state in the case no countermeasure is used.

Sbox Other+

mask0

state(0) +

key(0)

Sbox Other'+

with countermeasure

without countermeasure

psbm

psb

state(1)

state(1)’

Figure 4.26: Architecture with the probes for first-order analysis.

of the 32 byte stream. If the countermeasure works, we should not see any significant cross-
correlation in the upper-right and lower-left parts of the matrix itself (see Figure 4.27). As a
reference, the heatmap in Figure 4.28 shows what happens when we correlate psb with itself.

0

10

20

30

0 10 20 30
[p_sbm]+[p_sb]

[p
_s

bm
]+

[p
_s

b]

0.00

0.25

0.50

0.75

1.00
value

Figure 4.27: Correlation unmasked vs masked.

Per-byte statistical analysis. For each byte taken from probe psb we are now interested
in the distribution of the corresponding values taken by psbm. This is actually a conditional
probability distribution.
In Figure 4.29 we plot, for each of the possible byte values (0-255) in the unmasked state,
the average value that has been assumed in the corresponding masked situation. Each byte
value has 16 samples due to the different positions in the state of the AES.
For comparison, here is the distribution when we turn off masking:
In Figure 4.31, we look at the distribution of the raw data for each byte value. Beware that
here we lose the distinction between different bytes of the state.

Experimental validation - Second order analysis

In this analysis we are interested in correlating the XOR of round 1 and 2 exit state with
countermeasure (pmr = pmr1 ⊕ pmr2), with the equivalent we would have without counter-

HECTOR D3.1 Page 83 of 129

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

0

10

20

30

0 10 20 30
[p_sb]+[p_sb]

[p
_s

b]
+

[p
_s

b]

0.00

0.25

0.50

0.75

1.00
value

Figure 4.28: Correlation unmasked vs unmasked.

0

100

200

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256
byte value in the unmasked case (0−255)

by
te

 v
al

ue
 in

 th
e

m
as

ke
d

ca
se

Figure 4.29: Distribution unmasked vs masked.

0

100

200

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256
byte value in the unmasked case (0−255)

by
te

 v
al

ue
 in

 th
e

un
m

as
ke

d
ca

se

Figure 4.30: Distribution unmasked vs unmasked.

HECTOR D3.1 Page 84 of 129

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

0

100

200

0123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255
byte value in the unmasked case (0−255)

by
te

 v
al

ue
 in

 th
e

m
as

ke
d

ca
se

Figure 4.31: Per-byte distribution unmasked vs masked.

measure (pr = pr1 ⊕ pr2). This actually corresponds to evaluating how the switching activity
on the finite state machine registers is correlated.

Round 1 + Round 2 output state correlation
Check whether the xor of Round 1 and Round 2 state
is correlated with the same value in the no countermeasure case.

Sbox Other+

mask0

state(0)
+

key(0)

Sbox Other'+

with countermeasure

without countermeasure

state(1)’

Sbox Other+

key(1)

Sbox Other'+

state(2)

state(2)’

pmr1 pmr2+

pmr

pr1 pr2+

pr

Figure 4.32: Architecture with the probes for second-order analysis between mask and
masked value.

Since one mask protects only against a first order attack, there should be evident correlation
between pmr and pr, as demonstrated in Figure 4.33.

XOR between bytes after SBOX. We now introduce two probes psbm and psb that produce
a single byte, which is the result of a XOR between each pair of bytes in the state. We then
correlate this value with the case with no countermeasure.
A first order countermeasure cannot hide this correlation. The diagram in Figure 4.35 shows
an evident correlation.

4.1.6 Conclusions

We described the major Haskell features that can be used to describe hardware crypto-
graphic blocks. Any design flow that does not guarantee acceptable results, both cost-wise
and performance-wise, would be completely useless in an industrial setting. Is our design
methodology ultimately valuable? Our experimental evaluations yield encouraging results
and show that a hardware design workflow that includes Haskell/CλaSH is indeed feasible

HECTOR D3.1 Page 85 of 129

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

0

10

20

30

0 10 20 30
[p_mr]+[p_r]

[p
_m

r]
+

[p
_r

]

0.00

0.25

0.50

0.75

1.00
value

Figure 4.33: Second-order Correlation between mask and masked value.

Bytes of the state after Sbox
We instrument the state after the SBox. We then take (almost) each pair of
the state, xor the two bytes toghether and correlate it with the same value
when no countermeasure is used.

Sbox+

mask0

state(0) +

key(0)

Sbox+

with countermeasure

without countermeasure

psb

.

.

.

+ psbm

.

.

.

+

Figure 4.34: Architecture with the probes for second-order analysis between two masked
values.

0

10

20

30

0 10 20 30
[p_sbm]+[p_sb]

[p
_s

bm
]+

[p
_s

b]

0.00

0.25

0.50

0.75

1.00
value

Figure 4.35: Second-order Correlation between two masked values.

HECTOR D3.1 Page 86 of 129

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

and should be further explored in future efforts.

Such a framework already provides benefits in the design of security-critical hardware IPs,
thanks to the possibility to strictly bind an actual implementation to its original high-level
specifications. When side-channel analysis comes into the picture, we successfully showed
some examples about how the framework can support statistical analysis and checking of
high level side-channel properties.
One very concrete use case is the one described in the recent work [111]. It describes a
method to verify the soundness of a masking scheme before implementing it on a device,
based on instrumenting a high-level implementation of the masking scheme and by applying
leakage detection techniques on it. In this way, a system designer can quickly assess at
design-time whether the masking scheme is flawed or not, and to what extent. It is a tech-
nique extensively applied in practical contexts. It is evident how such a method can benefit
when it is realized in practice by using a high-level description in Haskell/CλaSH. In this
case, the framework described in the previous sections guarantees the coherence between
the model and the HDL instance, which would be otherwise impossible to obtain.

4.2 Hazard Algebra

4.2.1 Motivations

The power consumption leaked by a device and exploited for a side-channel attack can be
produced by glitches, side-channel information caused by the different propagation of sig-
nals in the circuits that are difficult to predict. Recently, a large study about glitches in circuits
has been developed, since they represent a new side-channel information previously not
highly regarded, but that defines a threat for secrets concealed in the devices. In [40], pub-
lished at the beginning of the 21th century by Brzozowski and Esik, an accurate description
of propagation of glitches in a circuit is reported, through the definition of an algebra called
Hazard Algebra. Hazard Algebra describes the propagation of glitches in the worst-case
scenario, namely when there is the higher number of glitches in a specific circuit.
A further study about glitches has been implemented starting from the Hazard Algebra and
developed to create a methodology for the characterization of leakages in combinatorial
logic, called LP model [31]. It works in the worst-case of propagation of glitches, i.e. in the
same situation examined by Hazard Algebra. LP model is a method that allows to recover
some fatal leakages caused by glitches, specifying the combinatorial part of the circuit that
produces these leakages. This model can be interpreted as a tool to assess the security of
cryptographic circuits against side-channel attacks.
Then, both Hazard Algebra and LP Model describe the propagation of glitches in the worst-
case, but we realized that this situation described not always is a real situation; we think that
is necessary a study about some structures that can represent a more realistic situation for
circuits and better quantify the amount of critical leakages.
Another relevant point of our study is the order of an attack (and in particular of a side-
channel attack). There are some articles in literature that give some different definitions of
the order of an attack, and in particular we focus our attention on definitions in two articles
[78] [94]. In [78], the order of an attack is the number of probes (metal needles that read
information through wires) placed in the circuit; instead, in [94] the order of the attack is
the statistical moment used to implement it. Also in article [100], in which some features

HECTOR D3.1 Page 87 of 129

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

about security of hardware implementations against side-channel attack of the first order are
exposed, it is not clear what they mean with “first order”. For some attacks, these two defini-
tions of the order of an attack are not in contrast, and then the order of them can be simply
given; but very often these definitions are discordant and create some misunderstandings,
and for this we think that it is necessary a new redefinition of this concept.
The main cryptographic algorithm that we use as example is the KECCAK algorithm [26] [25].
In particular, we often analyse only the nonlinear part of this algorithm, since generally this
is the target of side-channel attacks [24] [21].

4.2.2 Hazard Algebra

Definition 4.1. A glitch or hazard is a fast and unwanted change at the output of a gate in a
circuit due to different time propagation of the inputs.

Also in the case of a synchronous circuit, an unwanted change in a signal increases the
energy consumption, which can be exploited for a side-channel attack, where glitches are
considered the side-channel information.
The study of glitches in circuits has been a widespread problem in early years of design of
circuits. A very interesting description of glitches through bitstrings and an Algebra based on
them has been described in [40] by J. Brzozowski and Z. Ésik. In that work, a tool to evaluate
the presence of glitches under worst-case conditions of propagation was introduced.

Definition 4.2. In a circuit, the Worst-Case Scenario for glitches propagation describes what
happens when the highest number of glitches occurs at each gate in the circuit. This situation
implies the maximum power consumption in the circuit, and this is the reason why it is called
worst-case.

In our work, we are not interested in the specific value of signals in all time instances, but
only in their changes. For this reason, we introduce the definition of transient.

Definition 4.3. A transient is a bitstring t without any repetition of zeros and ones:

• t = e is the empty transient, corresponding to the empty bitstring;

• t = b1b2...bk with bi ∈ Z2 and bj 6= bj+1, ∀j ∈ {1, ..., k − 1}.

The set of all non-empty transients is defined as the set

T = 0(10)i
⋃

1(01)j
⋃

0(10)h1
⋃

1(01)r0

with i, j, h, r ∈ N0.
For any t ∈ T , with t = a1a2...an, some features are defined: z(t) is the number of zeros of t;
u(t) is the number of ones of t; α(t) is the first element of t, i.e. a1; ω(t) is the last element of
t, i.e. an; l(t) is the length of t, i.e. n. Given these specifications, it is possible to notice that
every transient t is uniquely determined by α(t) and l(t), or by ω(t) and l(t), or by α(t), ω(t)
and z(t), or by α(t), ω(t) and u(t).
We can define three operations on transients: � is the sum in T , � the product and · the
complement.

• For any transient t ∈ T , t � 0 = 0 � t = t and t � 1 = 1 � t = 1. If w and w′ are two
elements of T such that both their lengths are >1, then their sum is w � w′ = t, where
α(t) = α(w) ∨ α(w′), ω(t) = ω(w) ∨ ω(w′) and z(t) = z(w) + z(w′)− 1.

HECTOR D3.1 Page 88 of 129

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

• For any transient t ∈ T , t � 0 = 0 � t = 0 and t � 1 = 1 � t = t. If w and w′ are two
elements of T such that both their lengths are >1, then their product is w � w′ = t,
where α(t) = α(w) ∧ α(w′), ω(t) = ω(w) ∧ ω(w′) and u(t) = u(w) + u(w′)− 1.

• The complement t̄ of a transient t ∈ T is obtained by complementing each element in
t.

Give these three operations, a new algebra is defined: the Change-counting Algebra or
Hazard Algebra C = (T,�,�, · , 0, 1), where 0 and 1 are the only transients with length 1 of
C.

Theorem 4.2.1. The Hazard Algebra C = (T,�,�, · , 0, 1) is a commutative de Morgan
bimonoid, i.e, given x, y, z ∈ T , it satisfies the equations in Table 4.4.

Table 4.4: Laws of Hazard Algebra.
L1 x� y = y � x L1’ x� y = y � x
L2 x� (y � z) = (x� y)� z L2’ x� (y � z) = (x� y)� z
L3 x� 1 = 1 L3’ x� 0 = 0
L4 x� 0 = x L4’ x� 1 = x
L5 x = x
L6 x� y = x� y L6’ x� y = x� y

On the set of transients T it is also possible to define a XOR function among n transients, in
such a way that it always represents the worst-case scenario of glitches propagation. Given
t1, ..., tn ∈ T , w = XOR(t1, ..., tn) is such that:

α(w) = XOR(α(t1), ..., α(tn))

ω(w) = XOR(ω(t1), ..., ω(tn))

l(w) = 1 +
n∑
i=1

(l(ti)− 1) = 1− n+
n∑
i=1

l(ti)

Glitch-counting algorithm

Given a circuit with m inputs and k gates, we denote by X = (X1, X2, ...Xm) the vector of
input variables and by s = (s1, s2, ..., sk) the vector of state variables, which are the gates’
outputs. We define with sh vector s without h − th component, 1 ≤ h ≤ k. The Boolean
function Sj : Zm2 ×Zk−12 −→ Z2 is called excitation and it is the function that allows to compute
the state variable sj = Sj(X, s

j) = Sj(X1, ..., Xm, s1, ..., sj−1, sj+1, ..., sk). The vector S(X, s) =
(S1(X, s

1), ..., Sk(X, s
k)) is called the vector of excitations of the circuit.

Initially, the circuit is in a stable state (a′, b); then the input bits change from a′ to a and the
input states vector is set to a = a′◦a = (a1◦a′1, a2◦a′2, . . . am◦a′m) where ai◦a′i is aia′i if ai 6= a′i
or ai if ai = a′i . After the input bits change, some state variables become unstable. Indeed
now they do not represent the correct logic output of their corresponding gates. All unstable
variables are changed at the same time to their excitations. We obtain a new internal state
s∗0, which is a vector of transients from the set T . The process is then repeated, computing
at each round h the new internal state s∗h, until the last state variable vector computed is
equal to the second-last vector. A pseudo-code of the Glitch-counting algorithm is reported
in Algorithm 1.

HECTOR D3.1 Page 89 of 129

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

Algorithm 1 Glitch-counting algorithm
Input: The initial stable state (a′, b), the new input a and the vector of excitations among

transients S(X,s) of a circuit.
Output: A list of k transients, one for each gate’s output, describing the worst possible

switching activity during the transition a = a′ ◦ a.
1: h← 0;
2: a← a′ ◦ a;
3: s∗0 ← b;
4: repeat
5: h← h+ 1;
6: s∗h ← S(a, s∗(h−1));
7: until s∗h = s∗(h−1);
8: return s∗h;

4.2.3 LP Model

The LP (Leakage Path) model [31] is a mathematical abstraction that expands the function-
alities of the glitch-counting algorithm; it is a tool that allows to evaluate whether a circuit has
a critical leakage from the security point of view. This model is based on three entities: Input
Variables, Literal Transients and Literifiers.

Definition 4.4. Input Variables are the circuit’s inputs, and they are the only part of the circuit
that can trigger a signal propagation. Generally, if we consider only one gate, Input Variables
of this gate are variables that are directly given as input to a gate. We denote Input Variables
as Xj, or Xj if they are seen as transients.

Given a circuit with m inputs, we can enumerate all the Input Variables, calling each of them
i instead of Xi; I = {1, ...,m} ⊂ N is the set of Input Variables.

Definition 4.5. Given a gate with m inputs, namely X = {X1, ..., Xm}, we call Literal Tran-
sient any subset of I = {1, ...,m}. The set of Literal Transients is denoted by P({1, ...,m}),
where P is the power set. Each of this Literal Transient is a list of Input Variables, which
are responsible for the switching activity (and then power consumption) and could then be
leaked according to our power model.

Literal Transients play a central role in the LP Model, because they define which Input Vari-
ables can be leaked in a circuit at gate level, caused by combinatorial logic.

Definition 4.6. Literifier is the function

Lf : (T × I)r −→ I

i.e., given a gate that implements a boolean function f , and that depends on r gates and/or
Inputs Variables labelled ((t1, l1), ..., (tr, lr)) ⊂ (T × I)r, the Literifier gives the corresponding
Literal Transient. This gate is then labelled itself with a couple composed by a transient,
calculated by glitch-counting algorithm, and a Literal Transient, computed by the Literifier.

For some applications of LP Model on a circuit, see section 4.2.7.

4.2.4 Propagation Sequences

The first step, fundamental for the description of propagation sequences, is to define a new
time unit. Such time unit, which is typical of a circuit, refers to an ideal case with a null
switching time (time necessary to the signal’s stabilization in a transition from 0 to 1 or from
1 to 0).

HECTOR D3.1 Page 90 of 129

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

Definition 4.7. A Time Slot is a time unit that refers to a fraction of the time of the signal
propagation in a circuit, in which at most one change of the output bit of one gate occurs.

Given a circuit, we are interested in finding the gates that can be affected by different signal
propagations. In particular, these gates are AND, OR and XOR gates. We start to study
combinations on gates.

Definition 4.8. Given a gate with n inputs, we call combination the string a1a2...an, such that
ai ∈ {1, ..., n} and ai 6= aj ∀i 6= j and 1 ≤ i, j ≤ n.

Definition 4.9. Given a gate with n inputs, Cb is the set of all possible combinations on n
inputs; its cardinality is n!.

Given the previous definitions, it is easy to see a link between the set of combinations of n
inputs and the symmetric group Sn.

Proposition 4.2.2. Let n be the number of inputs, Cb the set of all combinations on n inputs
and Sn the symmetric group on {1, ..., n}. Then there is a bijective map ι between Sn and
Cb.

Now, starting from what has been exposed for gates, we can give the same definitions and
framework for a generic circuit, with n inputs and m gates.
In order to make this study, we have to follow some steps.

1. At first, it is necessary to define the set of all inputs of the circuit, that can be seen as
a set I ⊂ N.

2. At each circuit’s input Xj is linked the set {j}, with 1 ≤ j ≤ n, called Circuit Input
Variable.

3. At each i− th gate (1 ≤ i ≤ m) is linked a set Igi ⊂ I, called Gate Inputs Variables, that
corresponds to inputs that can have some effects on the gate, namely those inputs on
which the gate depends on. It can be also seen as the union of Gate Inputs Variables
and Circuit Inputs Variables before the i − th gate. Namely, given Xj1 , ..., Xjv circuit’s
inputs that are also input of the i− th gate and gj1 , ..., gjw gates of circuit which outputs
are inputs of the i− th gate:

Igi = (
⋃

s∈{1,...,v}
{js})

⋃
(
⋃

s∈{1,...,w}
Igjs)

If a gate depends on a circuit’s input Xj (1 ≤ j ≤ n) in two different ways, then we
have to add one input circuit n + 1 to set I = {1, ..., n}, creating an extended set
Ī = {1, ..., n + 1}, and the subset of Ī linked to the gate will contain both j and n + 1.
The same happens also if a gate depends on a circuit’s input Xj in r ways, with r > 2.
This procedure is repeated for each gate that depends on one or more inputs in two or
more ways, adding every time elements to the extended set Ī.

4. The number of time slots of the circuit is the sum of the cardinalities of all the Gate
Inputs Variables defined in the previous point:

nts =
m∑
i=1

|Igi|

HECTOR D3.1 Page 91 of 129

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

5. The number of combinations for this circuit is given by l!, where l is the cardinality of Ī
(which is the set linked to the gate that produces the circuit’s output bit).

Given a circuit with n inputs and m gates, and a vector of time slots of a combination c, we
can associate to this vector two other vectors of the same length:

• TSi is composed of cells that define which switch of circuit’s input have triggered the
change in the corresponding time slot;

• TSg reports which gate is considered in the corresponding time slot.

Glitch-counting algorithm for combinations

Initially, the circuit C is in a stable state (a′, b). Then the input bits change from a′ to a. Now
we have an additive information with respect to the worst-case, i.e. the vector of time slots
of a combination c ∈ Cb, and then we know how the signal propagates in the circuit. A
pseudo-code of the Glitch-counting algorithm for combinations is reported in Algorithm 2.

Algorithm 2 Glitch-counting algorithm for combinations
Input: The initial stable state (a′, b), the new input a , the vector of excitations among tran-

sients S(X,s) of a circuit, nts the number of time slots, two vectors TSi and TSg (that
correspond to time slots vector of combination c).

Output: A list ofm transients, one for each gate’s output, describing switching activity during
the transition a = a′ ◦ a for combination c.

1: h← TSi(1);
2: a(h)← a′(h) ◦ a(h);
3: for j = 1→ nts do
4: if TSi(j) 6= h then
5: h← TSi(j)
6: a(h)← a′(h) ◦ a(h);
7: end if
8: sTSg(j) ← STSg(j)(a, s)
9: end for

10: return s;

Propagation Sequences as quotient set

The gate that produces the circuit’s output bit is affected by switches happening all over the
circuit (and then by glitches) and their propagation in it. Then, we can give the following
equivalence, in which we use transients computed by the Glitch-counting algorithm for a
given combination.

Definition 4.10. Given a circuit, let {X t0
1 , ..., X

t0
n } be the set of inputs at time t0 and {X t1

1 , ..., X
t1
n }

the set of inputs at time t1. Let Cb be the set of all combinations for the circuit. We define
an equivalent relation ∼Cb in Cb such that, for all c1, c2 ∈ Cb, c1 ∼Cb c2 if and only if, for
each possible set of inputs {{X t0

1 , ..., X
t0
n }, {X t1

1 , ..., X
t1
n }}, the transient at the gate produc-

ing the circuit’s output bit (computed with the glitch-counting algorithm on combination c1 and
combination c2) is always the same.

Definition 4.11. Let n be the number of inputs of a circuit, Cb the set of its combination and
∼Cb the equivalence on it defined above. The quotient set

Cb

∼Cb
HECTOR D3.1 Page 92 of 129

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

is the set of Propagation Sequences, and Propagation Sequences are the equivalent classes
of Cb on the equivalence ∼Cb.

Definition 4.12. The number of Propagation Sequences for a particular circuit is the cardi-
nality of the set of Propagation Sequences, namely

nPS =

∣∣∣∣ Sn∼Sn

∣∣∣∣
An example of the use of combinations and propagation sequences is presented in section
4.2.7.

Comparison between Worst-Case Scenario and Propagation Sequences

The study of propagation sequences is justified starting from what has been stated at the
beginning of this section: given a circuit and some specific inputs for it at two different con-
secutive times t0 and t1, the Worst-Case Scenario of Glitches Propagation represents what
can happen in the worst possible case. Instead, propagation sequences on a circuit are all
the possible signal propagations that can happen, and some of them can be different from
the worst-case.

Example 4.2.1. In Figure 4.36 is given an example circuit. In this circuit the following six
time slots can be identified:

• TS1 −→ a switch of X1 causes a (possible) change of s3 output bit

• TS2 −→ a switch of X2 causes a (possible) change of s1 output bit

• TS3 −→ a switch of s1 output bit causes a (possible) change of s2 output bit

• TS4 −→ a switch of s2 output bit causes a (possible) change of s3 output bit

• TS5 −→ a switch of X3 causes a (possible) change of s2 output bit

• TS6 −→ a switch of s2 output bit causes a (possible) change of s3 output bit

So, in this circuit there are two possible propagation sequences:

PS1: TS1 PS2: TS1

TS2 TS5

TS3 TS6

TS4 TS2

TS5 TS3

TS6 TS4

All the other (3! − 2) combinations define a propagation sequence equivalent to one of the
two above.
On this circuit with these two propagation sequences, two examples are described.

HECTOR D3.1 Page 93 of 129

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

Figure 4.36: Circuit with transients.

1. In the first case, represented in Figure 4.37 on the left, we consider inputs at time t0
{X1, X2, X3} = {0, 1, 1}, and at time t1 {X1, X2, X3} = {0, 0, 0}. What happens in the
worst-case can be computed with the glitch-counting algorithm (depicted at the top).
What happens in the circuit if the signal propagation is described by first propagation
sequence is in the middle, with the second propagation sequence in the bottom. In this
case, with these inputs, the worst-case matches with the first propagation sequence.

2. In the second case, represented in Figure 4.37 on the right, we consider inputs at time
t0 {X1, X2, X3} = {0, 0, 0}, and at t1 {X1, X2, X3} = {0, 1, 1}. Again, what happens
in the worst-case can be computed with the glitch-counting algorithm (depicted at the
top). What happens in the circuit if the signal propagation is described by the first
propagation sequence is in the middle, with the second propagation sequence at the
bottom. Differently than the previous case, the propagation sequence that describes
the worst-case is the second one.

Then, sometimes the worst-case coincides with one propagation sequence, and sometimes
with the other one.

Observation 1. In a real circuit, if there are no changes of physical conditions (like tempera-
ture of environment) the propagation of signal is always the same, and then the propagation
of the signal respects only one specific propagation sequence. A propagation sequence in
a circuit is dictated by intrinsic properties of the circuit, as the length of the wires, or the
material of which is realized. In our work, given a circuit, every time we consider all possible
propagation sequences, to give a complete analyses of all possible cases that can happen in
real circuits, with the same gates and connections of the ideal one, but with different features.

4.2.5 Order of an Attack

Probes that are considered in [78] are metal needles placed on wires of interest, and their
task is to read off the value carried along the wires during the computations. We can revise
this concept, introducing a new instrument similar to the probe but with a different task.

Definition 4.13. An ideal probe is a probe that can reveal the value carried along a specific
wire, discerning all possible switches in every time slot.

In general, a measuring instrument has a proper spatial resolution and time resolution.

• Spatial resolution is inherent to the precision whereby it is possible to measure the
consumption: if an instrument is very sophisticated, it can recover consumptions in
each wire of a circuit, while a less sophisticated instrument records a sum of these

HECTOR D3.1 Page 94 of 129

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

Figure 4.37: Circuit with transients.

consumptions. Ideal probes can be placed on every wire in a circuit, and then they
have maximal spatial resolution.

• Time resolution is defined by the bandwidth of the instrument: the wider the bandwidth
is, more switches can be identified in time. We can say that ideal probes have infinite
bandwidth, since they can identify any switch in any time slot considered, and therefore
with maximal time resolution.

It follows from this that ideal probes are instruments that can recover all switches that happen
in the circuit (i.e, they can read activity in all time slots) and at level of all gates. In contrast,
a real measuring instrument cannot recover all switches that happen (less time resolution)
and/or cannot monitor all gates (less spatial resolution).
As mentioned also in 4.2.1, some authors refer to the number of probes placed on the wires
of the circuit [78], while some others refer to the statistical moment used to implement the
attack [94].
Often these two definitions are discordant and create some misunderstandings. For exam-
ple, in [99] and [100] the authors describe threshold implementations, a countermeasure
against side-channel attacks in presence of glitches; specifically in [100], they enumerate
three properties that this countermeasure must have to offer protection against an attack of
the first order, without specifying what they accept as order of an attack.
Starting from these concepts, we think that a new definition of order of an attack is needed,
collecting together all notions exposed until now.

• The first concept that is necessary for the definition is the statistical moment used to
implement the side-channel attack. The order of the statistical moment is a relevant

HECTOR D3.1 Page 95 of 129

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

notion about the attack, and it must not be omitted; this point conciliates our definition
with what is exposed in [94].

• Another relevant concept is the number of points examined in the circuit, namely the
parts of the circuit that an attacker has to monitor to implement an attack. In this way,
the concept exposed in [78] is incorporated in our definition.

• The last concept is how many points in time have to be considered, or, in other words,
the time instances that an attacker has to consider to attack the circuit. This con-
cept reflects definition of v−variate attack in [94], but where v indicates different time
instances in the same clock cycle.

These three dimensions contain all the fundamental features of an attack; then, starting from
them, definition 4.14 follows.

Definition 4.14. The order of an attack is an element (sm, sp, ti) of the tridimensional space
R3 such that:

• sm is the order of the statistical moment used to distinguish two distributions;

• sp id the number of spatial points monitored in the circuit;

• ti is the number of time instances analysed.

Figure 4.38: Order of an attack, in three dimensions: statistical moment, spatial points and
time instances.

Each time slot scans a time instance and it refers to one gate only; gates in the circuit are the
spatial points considered. Since we are interested in the gate considered for each time slot,
also TSg is important (section 4.2.4), because this vector defines our possible monitored
points in the circuit. Therefore, the features of an attack that we have to recover in order to
define its order are:

• the order of the statistical moment used;

• the number of spatial points considered, that are output wire of gates in the circuit;

• the number of time instances, that are time slots kept in consideration for the attack.

HECTOR D3.1 Page 96 of 129

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

The space of the order of an attack is a tridimensional space, namely a set S such that
S ⊂ R3. For each circuit that we can consider, this set is contained but not equal to R3 since
there are some points in R3 that cannot represent any attack. For example, given a circuit
C, the number of points in space is limited by the number of gates in C. Furthermore, if
the time slots corresponding to each gate in C are at most n, in S there cannot be a point
(sm, 1, n+ r) with r ≥ 1, because it does not exist any gate with n+ r instances.
The number of time slots for each gate can be read in the vector TSg, because it is the
length of TSg.

Example 4.2.2. If we consider the TSg vector

3
1
3
2
3
2
3

we have the following information:

• the time slots are 7, and then the highest number of time instances that we can consider
is 7;

• the number of gates in the circuit is 3;

• it is possible to consider one time instance for the gate 1, two instances for the gate 2
and four for the gate 3.

An attack unlikely involves higher values for each dimension, since an attack of higher order
is more expensive. Furthermore, there are limitations in circuit’s conformation when recover-
ing traces for a side-channel attack and the noise becomes more relevant with an increase
of the statistical order. Then, we can resume what explained until now in the following points:

• if the order of statistical moment used for the attack grows, then the noise in recovering
traces becomes more relevant and the attack more difficult to implement;

• if the number of points considered in the circuit is high, it means that the instrument
used for the measurements has to be more sophisticated (and then more expensive);

• if the number of time instances necessary to implement the attack is high, the measur-
ing instrument has to recover all the switches that happen in time slots, thus requiring
wider bandwidth (once again resulting more expensive).

Observation 2. If an instrument reads a consumption equivalent to the sum of consumptions
recovered by n probes placed on n different points of the circuit, then the spatial points used
for an attack that involves this instrument are n; time instances are all m time slots referring
to the spatial points considered (m ≥ n). The attack described is a (sm,n,m) attack.

HECTOR D3.1 Page 97 of 129

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

Examples of attacks on AES

To validate what has been exposed until now in this section, some examples of attacks
are exposed below, focusing on how the order of these attacks can be reformulated as a
tridimensional point.
The first two examples are two different possible attacks on AES without countermea-
sures. The part of the algorithm that generally is subjected to attacks is the non-linear one:
in this part of AES, plaintext of 128 bits is split into blocks of 8 bits, and SBOX function is
applied on each block independently, producing an output of 8 bits.
In a device that implements AES, the nonlinear function can be realized in two different ways:

• with one circuit that executes SBOX, and then the function is applied on the blocks of
the plaintext serially, one block at time, in different clock cycles;

• with 16 circuits, each one executing SBOX, and then the function is applied on the
blocks of the plaintext in parallel executions.

In the first case, not much physical space is employed, but it demands more time of exe-
cution; instead, the second realization allows more speed of execution, but there is more
physical space in the device.
If there is only a circuit that implement the SBOX function, an attack using the first statistical
moment (mean) can be implemented by monitoring the output of the SBOX, each time it
processes a new block: thus it is necessary only one ideal probe placed at the output wire of
the SBOX circuit, but one time instance for each block. To recover 8 bits of the key in each
clock cycle, the attack is a (1,1,1) attack, in accordance with definition 4.14. To recover the
complete key, this attack procedure must be repeated sixteen times, one for each byte.
In the second case, it is possible to carry out an attack (again using the first statistical
moment) by placing 16 ideal probes at the output wires of each SBOX. In this case we
are considering, in a clock cycle, 16 spatial points, and 16 time instances (time slots); then
this is a (1,16,16) attack that allows to recover all blocks of 8 bits of the key.
In the second case, if we have not an instrument with a wide bandwidth, but we can recover
only power consumption as summation of consumptions at the output gates of all SBOXes,
it is possible a (1,16,1) attack, that allows to recover 8 bits of the key, and in which consump-
tions of the other SBOXes create noise. To recover all block of the key, this attack procedure
must be repeated sixteen times, one for each byte.
This exposition does not consider all variables that can make an attack more difficult to
implement; for example, we do not consider that to compare some attacks’ implementations
it is important also the number of traces that are necessary to recover the secret.
Another example on AES can be the situation described in [103]: in this article, a second
order DPA attack on AES with mask is presented. This attack targets the XOR operation
of a byte of the key and a byte of the masked data (two spatial points), in two different
moments (two time instances); finally, first statistical moment (mean) is used for this attack.
Then, through the new definition of the order of an attack, the attack in [103], that allows
to recover 8 bits of the key, is a (1, 2, 2) attack (if the measuring instrument is sophisticated
enough and it has a wide bandwidth).

4.2.6 Power Consumption Models

Glitches described by transients in a circuit are generated by switches of input variables,
from bits in the original stable state at time t0 to new bits at time t1. Power Consumption

HECTOR D3.1 Page 98 of 129

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

models are methods to recover consumption in a circuit, exploiting propagation sequences,
and based on the model of power consumption in definition 4.15.

Definition 4.15. The Model of power consumption used in this section provides that at each
time slot the consumption is 1 if the output of the corresponding gate has a switch; otherwise
if the output signal of the gate is constant in the considered time slot, then the consumption
is 0.

Observation 3. The model defined in 4.15 is directly connected with glitches, since a glitch in
a gate defines a consumption p such that p ≥ 2; vice versa, if p = 0 there is not any change
in the gate, while if p = 1 there is a rightful change, that is present also without considering
the glitches.

Considering any propagation sequence, it is possible to collect the consumptions caused by
glitches in different ways, depending on the particular time unit and the method of collection.

• Different time units: the consumption can be computed at the end of a clock cycle, as
the summation of consumptions in all the gates of the circuit, or at intermediate levels;
these intermediate levels are time slots.

• Different methods of collection: it is possible to collect consumptions for each input at
time t1 and each previous input at time t0; otherwise, consumptions can be collected
computing, for all inputs at time t1, a mean over all inputs at time t0.

Starting from these features and combining them with each other, we define four Power
Consumption Models.

Power Consumption Model 1

The first Power Consumption Model consists in the collection of every consumption of each
gate in the circuit (in the meaning of definition 4.15), for each input at time t1 and considering
each possible input at time t0. This is the case of an attacker with a measuring instrument
with both very high spatial and time resolutions.
Given a circuit with n inputs, let X be the Input Variable set (see section 4.2.3); for each
x ∈ X, x is an element in Z2, and there are 2n different Input Variable sets depending on
different values that elements of X can take. If we consider all values that inputs can take at
time t0 and all at time t1, in total there can be 22n possibilities.
Now, given a specific propagation sequence in the circuit, we consider all possible inputs
at time t0 (that are 2n), all possible inputs at time t1 (that are 2n), and for each of these we
assign at all time slots 1 or 0, if in this particular time slot there is a switch or not.
Power Consumption Model 1 is the most detailed case, since with this an attacker can dis-
tinguish all gates and all time instances. Also for this reason, it is the most difficult case to
achieve and the most unrealistic.

Power Consumption Model 2

Power Consumption Model 2 consists in the collection of every change of each gate in the
circuit, for each input at time t1, computing the consumption mean over all possible input at
time t0.
Power Consumption Model 2 is such that an attacker, as for Power Consumption Model 1,
can monitor all gates of the circuit and for all time instances, but she knows only inputs at

HECTOR D3.1 Page 99 of 129

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

time t1 and not previous inputs at time t0. Then we have only 2n different vectors of time
slots, corresponding to 2n possible values at time t1.
This case is more likely than the first one, since very often an attacker can guess input at
time t1, but she does not know what was stored in the register, at time t0.

Power Consumption Model 3

In Power Consumption Model 3 the sum of all consumptions in the circuit is collected, for
each input at time t1 and considering each possible input at time t0. As Power Consumption
Model 2, also this model describes a situation in which the attacker knows less information
with respect to Power Consumption Model 1: in this case, the attacker knows all inputs at
time t0 and all inputs at time t1, but she cannot monitor all gates in the circuit and she can
only recover a summation of consumptions in them.
Like Power Consumption Model 1, in this model we have 22n possibilities of Inputs Variable,
2n at time t0 and 2n at time t1.

Power Consumption Model 4

The last Power Consumption Model that we present consists in a collection of the sums of
every consumption in the circuit, for each input at time t1, and computing the consumption
mean over all possible inputs at time t0. This is the case in which an attacker has a measuring
instrument with low spatial and time resolutions.
If an attacker decides to collect consumptions in a circuit with this model, this means that
she has a restricted amount of information: she knows only inputs at time t1 and not inputs
at time t0; moreover, she cannot recover consumptions for each particular time slot and gate,
and then the registered consumption is the sum of all consumptions in the circuit.
Similar to Power Consumption Model 2, in Power Consumption Model 4 only 2n possible
inputs values are considered, since the attacker knows only inputs at time t1.

Comparison among Power Consumption Models

Every Power Consumption Model has some specific features and, in accordance with them,
it is possible to create the following scheme:

Power Consumption Model 4 Worst-case for an attack:
| if there is an attack
| exploiting this model,
| then it is possible to attack also
| other models
| |
↓ |

Power Consumption Model 3 |
Power Consumption Model 2 |

| |
↓ ↓

Power Consumption Model 1 Best case for an attack

HECTOR D3.1 Page 100 of 129

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

The worst-case for an attack is represented by Power Consumption Model 4: this model is
used by an attacker when she does not know inputs at time t0 but only inputs at time t1, and
also she cannot monitor all gates in the circuit.
Instead, the best case for an attack is Power Consumption Model 1, because in this case
the attacker can recover all helpful information that she wants, since she has access to all
gates in the circuit and she knows all inputs (at time t0 and at time t1). However, this is also
the situation hardest to realize, because generally an attacker does not know inputs at time
t0 and she cannot monitor all gates.
Both Power Consumption Model 2 and 3 have some features of Power Consumption Model
1 and Power Consumption Model 4, and then they are between the worst-case and the best
one.

Observation 4. The worst-case for an attack is not the same as the worst-case of glitches
propagation: they are defined in two different frameworks, the first one is in terms of power
consumptions’ collection and the second one is referred to the signal propagation in the
circuit (and thus to glitches).

4.2.7 Application to KECCAK

As we said in section 4.2.1, our main example is KECCAK, and in particular its nonlinear part
(the χ function) is the main object of our study, since generally the target of a side-channel
attack is the nonlinear part of cryptographic algorithms. In this section, we apply LP model
and Power Consumption Model to define some possible fatal leakage of the circuits and to
know if there is some attack, the order of which we express in three dimensions.

Unshared χ

Figure 4.39: Circuit of χ function.

A first example is χ with a single-share. Any leakage at gate level is a leakage of a native
variable, so every transition consuming power produces a leakage of a native variable. χ has
three input bits, and then all the possible transitions are 23 · 23 = 64 (23 inputs at time t0 and
23 inputs at time t1). Trivial transitions, i.e. transitions where inputs at time t0 are the same
as inputs at time t1, do not leak anything, and they are 23 = 8. The LP model shows that
there also exist non-trivial transitions that do not lead to any switch of gates’ outputs, and
hence to any leakage. Referring to Figure 4.39, for instance, if X3 changes, but X1 is fixed
(to 0 or 1) and X2 is fixed to 1, no switch is produced. This happens in four cases, namely
when the input transitions are (1, 1, 1) → (1, 1, 0), (0, 1, 1) → (0, 1, 0), (1, 1, 0) → (1, 1, 1) and
(1, 1, 0) → (1, 1, 1). In conclusion, there are four non-trivial transitions out of 26 − 23 = 56
that do not leak anything, which means that the remaining roughly 81% of transitions are
vulnerable. In Figure 4.40, on the left there is an example of transition that produces some

HECTOR D3.1 Page 101 of 129

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

leakages (for X1 at gate s3, for X2 at each gate and for X3 at gate s2 and s3), and on the right
there is an example of non-trivial transition that does not produce any leakage.

Figure 4.40: Examples of LP model applied to the unshared χ, in two different cases: on the
left it is a case in which there are same leakages, and on the right it is a case where there is
no leakage.

χ is a function applied five times to each KECCAK state’s row, each time on three different
bits. A KECCAK row is composed by five bits, and thus there are 25 possible values, denoted
x0, ..., x31, such that xj = [xj1, x

j
2, x

j
3, x

j
4, x

j
5] with 0 ≤ j ≤ 31.

Referring another time to Figure 4.39, we can note that this circuit has three inputs, xi, xi+1

and xi+2, and three gates, s1, s2 and s3. Time slots are:

TS1 → change of output bit of s3 caused by the switch of xi

TS2 → change of output bit of s1 caused by the switch of xi+1

TS3 → change of output bit of s2 caused by the switch of output of s1

TS4 → change of output bit of s3 caused by the switch of output of s2 (in TS3)

TS5 → change of output bit of s2 caused by the switch of xi+2

TS6 → change of output bit of s3 caused by the switch of output of s2 (in TS5)

At first, we define how many propagation sequences there can be in this circuit. Input vari-
ables are three, then there are six combinations. Among them, combinations 123, 213 and
231 represent the same propagation sequence (because transients of output gate are always
the same), and 132, 312 and 321 are the same propagation sequence. Therefore, we have
two propagation sequences, with representatives:

• 123 for the first propagation sequence,

• 132 for the second propagation sequence.

Since with LP Model some leakages of native variables have been detected, we can analyse
if these leakages are exploitable with a Power Consumption Model. The first model studied
is the fourth, since if an attack with this Power Consumption Model 4 is found, then there
is an attack with all the other models (since it represents the worst-case for an attack).
We have computed all consumptions with both propagation sequences and they are reported
in Table 4.5 .

HECTOR D3.1 Page 102 of 129

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

Table 4.5: Consumptions of unshared χ in accordance with Power Consumption Model 4,
considering both propagation sequences.

xi xi+1 xi+2 consumption mean
with propagation sequence 123 with propagation sequence 132

0 0 0 1.5 2.5
0 0 1 2.5 2.5
0 1 0 1.5 1.5
0 1 1 2.5 1.5
1 0 0 1.5 2.5
1 0 1 2.5 2.5
1 1 0 1.5 1.5
1 1 1 2.5 1.5

Only the first propagation sequence is considered, since the discussion for the second one
is very similar.
We can notice that the consumption for this propagation sequence is 1.5 if xi+2 is 0 and
2.5 if xi+2 is 1, thus there is a relation between the power consumed and a native value,
and this is a fatal leakage. These power consumptions recovered with Power Consumption
Model 4 can be exploited for a CPA attack using the mean as statistical moment. Then we
exploit information recovered with power consumption model 4 to find one bit of the key with
a (1, 3, 6) attack, since we use the mean (first statical moment) and spatial points are all
gates in the circuit (observation 2), considering all six time slots.

χ with two shares

Figure 4.41: Atomic circuit of χ with two shares.

Secret sharing with two shares on χ can be a secure scheme in software (namely, it does
not leak any native variable), if the order of operations is kept fixed from left to right. The
same is not true in hardware, for instance because of glitches.
Since the two branches are symmetric, we can consider the circuit in Figure 4.41 when it
produces ai, then m1 = ai, m2 = bi+2, m3 = ai+1 and m4 = ai+2. Since there are four input
variables, all possible transitions are 28, and 24 of them are trivial. As analysed in [31], in
this circuit a natural vulnerability arises when the two variables ai+2 and bi+2 are processed
at the same moment by the last XOR gate, as this could leak the value ai+2 ⊕ bi+2, that is

HECTOR D3.1 Page 103 of 129

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

an unshared native value. If a particular transition generates this leakage, it can be read
through the LP model: it is present when literal transient for the last XOR gate contains {2}
and {4}. An example of what has been explained is represented in Figure 4.42: the transition
is (1, 1, 0, 0)→ (1, 0, 1, 1), and there is a leakage of both m2 and m4, namely bi+2 and ai+2. By
running the model for all the 28− 24 non-trivial possible input transitions, it is found that 32 of
them produce the defined vulnerability, i.e. 12.5% of all 28 transitions.

Figure 4.42: Example of LP model applied to a branch of χ with two shares: at XOR level
there can be some leakages of m2, m3 and m4.

Now we explain how these leakages can be exploited to compute an attack using power
consumption models. First step is to define propagation sequences in the atomic circuit of χ
with two shares (Figure 4.41); it has four inputs m1, m2, m3, m4 and four gates s1, s2, s3, s4.
Time slots are:

TS1 → change of output bit of s4 caused by the switch of m1

TS2 → change of output bit of s2 caused by the switch of m2

TS3 → change of output bit of s4 caused by the switch of output of s2 (in TS2)

TS4 → change of output bit of s2 caused by the switch of m3

TS5 → change of output bit of s4 caused by the switch of output of s2 (in TS4)

TS6 → change of output bit of s1 caused by the switch of m3

TS7 → change of output bit of s3 caused by the switch of output of s1

TS8 → change of output bit of s4 caused by the switch of output of s3 (in TS7)

TS9 → change of output bit of s3 caused by the switch of m4

TS10 → change of output bit of s4 caused by the switch of output of s3 (in TS9)

We can notice that a possible change of circuit’s input m3 can have effect on the last gate
s4 following two ways (TS4/TS5 and TS6/TS7/TS8). The set corresponding to the last gate is
I = {1, 2, 3, 4, 5}, hence the number of combinations is 5! = 120. The number of propagation
sequences is 4, since the quotient of the set of combination Cb on the equivalent relation
∼Cb has four equivalent classes, composed by thirty elements each one, and the chosen
representative elements are:

HECTOR D3.1 Page 104 of 129

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

• 12345 for propagation sequence 1

• 12354 for propagation sequence 2

• 13245 for propagation sequence 3

• 13254 for propagation sequence 4

For some inputs, there can be some leakage of the native variable xi+2 = m2 ⊕m4 at XOR
gate. We start to analyse if it is possible to use Power Consumption Model 4 to exploit
these leakages, otherwise we will consider the other Power Consumption Models. Con-
sumptions with all the propagation sequences are given in Table 4.6.

Table 4.6: Consumptions of an atomic circuit of χ with two shares in accordance with Power
Consumption Model 4, considering all propagation sequences.

m1 m2 m3 m4 m2 ⊕m4 consumption mean

PS 12345 PS 12354 PS 13245 PS 13254
0 0 0 0 0 3 2 3 2
0 0 0 1 1 3 3 3 3
0 0 1 0 0 2 2 3 3
0 0 1 1 1 2 3 3 4
0 1 0 0 1 4 3 3 2
0 1 0 1 0 4 4 3 3
0 1 1 0 1 3 3 3 3
0 1 1 1 0 3 4 3 4
1 0 0 0 0 3 2 3 2
1 0 0 1 1 3 3 3 3
1 0 1 0 0 2 2 3 3
1 0 1 1 1 2 3 3 4
1 1 0 0 1 4 3 3 2
1 1 0 1 0 4 4 3 3
1 1 1 0 1 3 3 3 3
1 1 1 1 0 3 4 3 4

At first, we can notice that with propagation sequence 13245, the consumption mean is the
same for all inputs at time t1, therefore with this propagation sequence no information can
be recovered, if consumptions are collected with Power Model Consumption 4. For the other
propagation sequences, we can analyse the distributions of the consumption means.

• With propagation sequence 12345, the distribution of consumptions (third column in
Table 4.6) is represented in Figure 4.43. It is possible to notice that the distribution of
consumptions when m2 ⊕m4 is 1 and the distribution of consumptions when m2 ⊕m4

is 0 are the same, thus it is impossible to distinguish them.

• With propagation sequence 12354, the distribution of consumptions (fourth column in
Table 4.6) is represented in Figure 4.44. Now distribution relative to 1 and distribution
relative to 0 are different: they have the same mean, but different variance; this feature
can be exploited for an attack with the second statistical order.

HECTOR D3.1 Page 105 of 129

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

Figure 4.43: Distribution of consumptions collected with Power Consumption Model 4 for
propagation sequence 12345.

Figure 4.44: Distribution of consumptions collected with Power Consumption Model 4, prop-
agation sequence 12354.

• With propagation sequence 13254, the distribution of consumptions (last column in
Table 4.6) is the same of propagation sequence 1, and then the conclusions are equal.

In conclusion, with this Power Consumption Model it is possible to implement an attack
to recover one bit of the key with the second statistical moment (considering propagation
sequence 2), but not with the first (all the distributions have equal mean). With notation in
three dimensions, to recover one bit of the key an attacker implements a (2,4,10) attack,
since she uses the second statistical moment and the consumptions are recovered in ten
time slots, referring to four gates.
Since for any propagation sequence there is no attack that uses the first statistical moment
and Power Consumption Model 4, we can try to analyse Power Consumption Model 2. We
recover consumptions for each time slot and for each input at time t1, computing the mean
on all inputs at time t0. Analysing all the propagation sequences for χ with two shares, it is
possible to notice that only propagation sequence 12354 can be interesting for our purpose,
since it is the only one with some relations between consumptions and xi+2 = m2 ⊕ m4;
consumptions are reported in Table 4.7.
We are interested in columns TS5 and TS10, since, for each row, mean consumption in
time slot TS5 is proportional to m2 and TS10 is proportional to m4. Then, an attacker can
implement a CPA considering consumption c, for each set of inputs of χ with 2 shares circuit,
defined as:

c = (p5 + p10)mod2

HECTOR D3.1 Page 106 of 129

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

Table 4.7: Consumptions of an atomic circuit of χ with two shares and propagation sequence
12354, in accordance with Power Consumption Model 2

m1 m2 m3 m4 m2 ⊕m4 consumption in each time slot
TS1 TS2 TS3 TS4 TS5 TS6 TS7 TS8 TS9 TS10

0 0 0 0 0 0.5 0.25 0.25 0 0 0.5 0.25 0.25 0 0
0 0 0 1 1 0.5 0.25 0.25 0 0 0.5 0.25 0.25 0.5 0.5
0 0 1 0 0 0.5 0.25 0.25 0 0 0.5 0.25 0.25 0 0
0 0 1 1 1 0.5 0.25 0.25 0 0 0.5 0.25 0.25 0.5 0.5
0 1 0 0 1 0.5 0.25 0.25 0.5 0.5 0.5 0.25 0.25 0 0
0 1 0 1 0 0.5 0.25 0.25 0.5 0.5 0.5 0.25 0.25 0.5 0.5
0 1 1 0 1 0.5 0.25 0.25 0.5 0.5 0.5 0.25 0.25 0 0
0 1 1 1 0 0.5 0.25 0.25 0.5 0.5 0.5 0.25 0.25 0.5 0.5
1 0 0 0 0 0.5 0.25 0.25 0 0 0.5 0.25 0.25 0 0
1 0 0 1 1 0.5 0.25 0.25 0 0 0.5 0.25 0.25 0.5 0.5
1 0 1 0 0 0.5 0.25 0.25 0 0 0.5 0.25 0.25 0 0
1 0 1 1 1 0.5 0.25 0.25 0 0 0.5 0.25 0.25 0.5 0.5
1 1 0 0 1 0.5 0.25 0.25 0.5 0.5 0.5 0.25 0.25 0 0
1 1 0 1 0 0.5 0.25 0.25 0.5 0.5 0.5 0.25 0.25 0.5 0.5
1 1 1 0 1 0.5 0.25 0.25 0.5 0.5 0.5 0.25 0.25 0 0
1 1 1 1 0 0.5 0.25 0.25 0.5 0.5 0.5 0.25 0.25 0.5 0.5

where p5 is the power consumption recovered at time slot TS5 and p10 the power consumption
at time slot TS10.
This attack, implemented to recover a bit of the key, in notation with three dimensions is a
(1,1,2). Indeed:

- sm = 1, because to implement this attack an attacker uses the first statistical moment;

- sp = 1, because only the consumptions recovered at level of the XOR gate is consid-
ered, as if there was an ideal probe placed in that point of the circuit;

- ti = 2, because the useful consumptions are recovered in two time slots, i.e. two
different time instances at level of the XOR gate (TS5 and TS10).

χ with three shares

The last case of study is χ with three shares. As it can be seen in Figure 4.45, in each
isolated branch no single native variable can be leaked, since every function is independent
of at least one share of each native variable (first function is independent from aj, second
function from bj and third one from cj). We can then consider two branches together: without
loss of generality, we consider the first function (that produces ai), and the second one (that
produces bi) (Figure 4.46).
In this case, if we monitor branches in at least two different points, for some transitions it
is possible to observe leakages that, combined together in some way, can give information
about a native variable. At first, there are eight input variables: ai+1, ai+2, bi, bi+1, bi+2, ci,
ci+1 and ci+2; then native input variables that can be leaked are xi+1 = ai+1 ⊕ bi+1 ⊕ ci+1 and
xi+2 = ai+2 ⊕ bi+2 ⊕ ci+2. The total number of transitions is 28 · 28 = 216, and 28 of them are
trivial. With only two probes, positioned at XOR gates, and running the LP model, we get:

• 6016 transitions produce a leak of information about xi+1, namely roughly 9, 18% of all
transitions;

HECTOR D3.1 Page 107 of 129

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

Figure 4.45: Atomic circuit of χ with 3 shares.

Figure 4.46: Two atomic circuits of χ with 3 shares: on the left the circuit that produces
output ai is depicted, on the right there is the circuit that produces output bi.

• 6144 transitions produce a leak of information about xi+2, roughly 9, 38% of all transi-
tions;

• among them, 1024 transitions produce a leak of both xi+1 and xi+2, 1, 56% of all transi-
tions.

Example 4.2.3. In Figure 4.47 there is an example of LP model application on two branches
of χ with three shares. Probes are placed on the two XOR gates. Input literals for input
variables are computed by literifiers in this way: L(bi) = {1}, L(ci+2) = {2}, L(bi+1) = {3},
L(bi+2) = {4}, L(ci+1) = {5}, L(ci) = {6}, L(ai+2) = {7},
L(ai+1) = {8}.
Inputs at time t0 are (bi, ci+2, bi+1, bi+2, ci+1, ci, ai+2, ai+1) = (0, 0, 1, 1, 1, 1, 1, 1), and at time t1
are (bi, ci+2, bi+1, bi+2, ci+1, ci, ai+2, ai+1) = (0, 1, 1, 0, 1, 0, 0, 0). Figure 4.47 depicts the situation
with transients, computed with the glitch-counting algorithm, and literal transients for each
gate, computed by literifiers. In the first function, at XOR gate there is a leakage of ci+2 and
bi+2, while in the second function at the same level there is a leakage of ci+2, ci, ai+2 and
ai+1: in this case, some information about xi+2 = ai+2 ⊕ bi+2 ⊕ ci+2 can be recovered.

Now we explain how these leakages can be exploited to compute an attack using power
consumption models. Referring to Figure 4.45, the atomic circuit has five inputs m1, m2, m3,
m4, m5 and four gates s1, s2, s3, s4. Time slots are:

HECTOR D3.1 Page 108 of 129

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

Figure 4.47: Example of LP model applied to two branches of χ with three shares: from the
first circuit there can be some leakages of m2 and m4 at XOR level, and from the second
circuit there can be some leakages of m2, m6, m7 and m8 at XOR level.

TS1 → change of output bit of s5 caused by the switch of m1

TS2 → change of output bit of s1 caused by the switch of m2

TS3 → change of output bit of s5 caused by the switch of the output of s1 (in TS2)

TS4 → change of output bit of s1 caused by the switch of m3

TS5 → change of output bit of s5 caused by the switch of the output of s1 (in TS4)

TS6 → change of output bit of s2 caused by the switch of m3

TS7 → change of output bit of s3 caused by the switch of the output of s2 (in TS6)

TS8 → change of output bit of s5 caused by the switch of output of s3 (in TS7)

TS9 → change of output bit of s3 caused by the switch of m4

TS10 → change of output bit of s5 caused by the switch of output of s3 (in TS9)

TS11 → change of output bit of s4 caused by the switch of m4

TS12 → change of output bit of s5 caused by the switch of output of s4 (in TS11)

TS13 → change of output bit of s4 caused by the switch of m5

TS14 → change of output bit of s5 caused by the switch of output of s4 (in TS13)

HECTOR D3.1 Page 109 of 129

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

Also in this case, there are two inputs variables (m3 and m4) that have effect on the last gate
s5 following two ways (for m3 TS4/TS5 and TS6/TS7/TS8, for m4 TS9/TS10 and TS11/TS12).
Then, the set linked to the last gate is I = {1, 2, 3, 4, 5, 6, 7}, and the number of possible
combinations is 7! = 5040. However, the quotient set Cb

∼Cb
has only eight elements, and we

choose as representatives of the classes:

• 1234567 for propagation sequence 1

• 1234576 for propagation sequence 2

• 1235467 for propagation sequence 3

• 1235476 for propagation sequence 4

• 1324567 for propagation sequence 5

• 1324576 for propagation sequence 6

• 1325467 for propagation sequence 7

• 1325476 for propagation sequence 8

We know that if we consider only one atomic circuit, there can be no leakage of some native
variable, since each atomic circuit never processes all shares of xi or xi+1 or xi+2. Moreover,
we can consider two atomic circuits together, but in this case it is clear that an attack imple-
mented considering only one spatial point is impossible. If two circuits are considered, the
number of propagation sequences grows to 8 ∗ 8 = 64.
Another time, without loss of generality, we can consider the two circuits in Figure 4.46,
namely circuits that produce outputs ai and bi. In this case, there are two possibilities to
recover a native value:

• native value xi+1 can be recovered in two cases:

– if there is a leakage of bi+1 and ci+1 in the first circuit and a leakage of ai+1 in the
second circuit;

– if there is a leakage of bi+1 in the first circuit and a leakage of ai+1 and ci+1 in the
second circuit;

• native value xi+2 can be recovered in two cases:

– if there is a leakage of bi+2 and ci+2 in the first circuit and a leakage of ai+2 in the
second circuit;

– if there is a leakage of bi+2 in the first circuit and a leakage of ai+2 and ci+2 in the
second circuit.

Instead, if we consider all three circuits together for an attack, the considered spatial points
are at least three, and in this case it would be possible to recover a native value among xi,
xi+1 and xx+2 (since all the shares of the native values are processed by the three circuits).
In Table 4.8 the measures collected with Power Consumption Model 4 are reported: they
refer to power consumptions of a single circuit, with all possible inputs at time t1 and all eight
propagation sequences.
If we consider two circuits, there can be some leakages of xi+1 or xi+2. Analysing all possible
cases, no consumption can be exploited to recover any information about native values, also

HECTOR D3.1 Page 110 of 129

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

Table 4.8: Consumptions of an atomic circuit of χ with three shares in accordance with Power
Consumption Model 4, considering all propagation sequences.

consumption mean

m1 m2 m3 m4 m5
PS PS PS PS PS PS PS PS

1234567 1234576 1235467 1235476 1324567 1324576 1325467 1325476
0 0 0 0 0 3.5 3.5 2.5 2.5 3.5 3.5 2.5 2.5
0 0 0 0 1 3.5 4.5 2.5 3.5 3.5 4.5 2.5 3.5
0 0 0 1 0 4.5 3.5 4.5 3.5 4.5 3.5 4.5 3.5
0 0 0 1 1 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5
0 0 1 0 0 2.5 2.5 2.5 2.5 3.5 3.5 3.5 3.5
0 0 1 0 1 2.5 3.5 2.5 3.5 3.5 4.5 3.5 4.5
0 0 1 1 0 3.5 2.5 4.5 3.5 4.5 3.5 5.5 4.5
0 0 1 1 1 3.5 3.5 4.5 4.5 4.5 4.5 5.5 5.5
0 1 0 0 0 4.5 4.5 3.5 3.5 3.5 3.5 2.5 2.5
0 1 0 0 1 4.5 5.5 3.5 4.5 3.5 4.5 2.5 3.5
0 1 0 1 0 5.5 4.5 5.5 4.5 4.5 3.5 4.5 3.5
0 1 0 1 1 5.5 5.5 5.5 5.5 4.5 4.5 4.5 4.5
0 1 1 0 0 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5
0 1 1 0 1 3.5 4.5 3.5 4.5 3.5 4.5 3.5 4.5
0 1 1 1 0 4.5 3.5 5.5 4.5 4.5 3.5 5.5 4.5
0 1 1 1 1 4.5 4.5 5.5 5.5 4.5 4.5 5.5 5.5
1 0 0 0 0 3.5 3.5 2.5 2.5 3.5 3.5 2.5 2.5
1 0 0 0 1 3.5 4.5 2.5 3.5 3.5 4.5 2.5 3.5
1 0 0 1 0 4.5 3.5 4.5 3.5 4.5 3.5 4.5 3.5
1 0 0 1 1 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5
1 0 1 0 0 2.5 2.5 2.5 2.5 3.5 3.5 3.5 3.5
1 0 1 0 1 2.5 3.5 2.5 3.5 3.5 4.5 3.5 4.5
1 0 1 1 0 3.5 2.5 4.5 3.5 4.5 3.5 5.5 4.5
1 0 1 1 1 3.5 3.5 4.5 4.5 4.5 4.5 5.5 5.5
1 1 0 0 0 4.5 4.5 3.5 3.5 3.5 3.5 2.5 2.5
1 1 0 0 1 4.5 5.5 3.5 4.5 3.5 4.5 2.5 3.5
1 1 0 1 0 5.5 4.5 5.5 4.5 4.5 3.5 4.5 3.5
1 1 0 1 1 5.5 5.5 5.5 5.5 4.5 4.5 4.5 4.5
1 1 1 0 0 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5
1 1 1 0 1 3.5 4.5 3.5 4.5 3.5 4.5 3.5 4.5
1 1 1 1 0 4.5 3.5 5.5 4.5 4.5 3.5 5.5 4.5
1 1 1 1 1 4.5 4.5 5.5 5.5 4.5 4.5 5.5 5.5

with all propagation sequences. Indeed, the mean of consumptions in all cases is always 8,
both if the native value (xi+1 or xi+2) is 0 or 1.
Also if we consider 3 circuits together, and analysing all possible cases, no consumption
can be exploited to recover any information about native values, also with all propagation
sequences. Indeed, the mean of consumptions in all cases is always 12, whether the native
value is 0 or 1.
With all three circuits, we can also think to relieve from consumptions some information
about the XOR of the output bits of all three circuits (that is a native value). Even with this
approach, it is not possible to distinguish if the native value is 0 or 1, with no propagation
sequence or particular input. Once again, the mean of consumptions in all cases is always
12, whether the native value is 0 and if it is 1.
With Power Consumption Model 4, all possible leakages are analysed, and we have verified
that there not can be any leakages exploitable to recover some information about native
values.
Now we study the consumptions recovered with Power Consumption Model 2, knowing
that the time slots for an atomic circuit of χ with 3 shares are 14 and considering all inputs at
time t1. With this analysis, we can notice that:

• In the table of consumptions of the circuit with propagation sequence 1234567, columns
of time slot 4 and time slot 5 are proportional to m2, columns of time slot 9 and time
slot 10 are inversely proportional to m3 and columns of time slot 13 and time slot 14
are proportional to m4.

• In the table of consumptions of the circuit with propagation sequence 1234576, columns
of time slot 4 and time slot 5 are proportional to m2, columns of time slot 9 and time
slot 10 are inversely proportional to m3 and columns of time slot 11 and time slot 12
are proportional to m5.

HECTOR D3.1 Page 111 of 129

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

• In the table of consumptions of the circuit with propagation sequence 1235467, columns
of time slot 4 and time slot 5 are proportional to m2, columns of time slot 7 and time slot
8 are proportional to m4 and columns of time slot 13 and time slot 14 are proportional
to m4.

• In the table of consumptions of the circuit with propagation sequence 1235476, columns
of time slot 4 and time slot 5 are proportional to m2, columns of time slot 7 and time slot
8 are proportional to m4 and columns of time slot 11 and time slot 12 are proportional
to m5.

• In the table of consumptions of the circuit with propagation sequence 1324567, columns
of time slot 2 and time slot 3 are proportional to m3, columns of time slot 9 and time
slot 10 are inversely proportional to m3 and columns of time slot 13 and time slot 14
are proportional to m4.

• In the table of consumptions of the circuit with propagation sequence 1324576, columns
of time slot 2 and time slot 3 are proportional to m3, columns of time slot 9 and time
slot 10 are inversely proportional to m3 and columns of time slot 11 and time slot 12
are proportional to m5 (Table 4.9).

• In the table of consumptions of the circuit with propagation sequence 1325467, columns
of time slot 2 and time slot 3 are proportional to m3, columns of time slot 7 and time slot
8 are proportional to m4 and columns of time slot 13 and time slot 14 are proportional
to m4.

• In the table of consumptions of the circuit with propagation sequence 1325476, columns
of time slot 2 and time slot 3 are proportional to m3, columns of time slot 7 and time slot
8 are proportional to m4 and columns of time slot 11 and time slot 12 are proportional
to m5.

We can try to exploit information about a native variable in more ways, from two or three
circuits, with different propagation sequences. We have decided to explain only one case,
where we try to recover xi+1, considering two circuits (first one producing ai and second
one producing bi), both with propagation sequence 1324576. From the first circuit, we can
recover information about m3 (i.e. bi+1) and m5 (i.e. ci+1), while from the second one we can
recover information about m5 (i.e. ai+1). All of these consumptions are recovered at level of
XOR gate, in both the circuits, and then in total two points have to be monitored, namely the
XOR gates.
In the following steps, we explain how an attacker can exploit this information to recover five
bits of the key with a CPA attack. At each clock cycle there is a leakage of xi+1, and after the
five χ operations all the five bits of the row of the key can be recovered.

• At the beginning, m traces are collected, for each possible value pi that the row of
KECCAK can assume, with 0 ≤ i ≤ 31, and recovering consumptions in each time slot,
and in all of the five rounds. All these consumptions are collected in a matrix T, that
has 32m rows (number of traces) and 14 ∗ 5 ∗ 2 columns, since there are 14 time slots,
five rounds (as the number of bits of the KECCAK row) and two circuits that we are
considering.

• In each round, an attacker is interested only on consumptions in time slot 3 and 12 for
the first circuit, and consumption in time slot 12 in the second circuit. For each row of T

HECTOR D3.1 Page 112 of 129

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

and for each round, these three consumptions are XORed, computing a matrix T̃ with
32m rows and five columns, a column for each round.

• Since an attacker does not know inputs at time t0, she computes the mean of all ele-
ments in each column inherent to the same input pi in T̃ computing a matrix T with 32
rows (one for each pi) and five columns. Finally, a vector t is constructed, such that the
first five elements are the first row of T, the second five elements are the second ow of
T, and so on.

• A matrix of hypothesis H is created, with the hypothetical consumptions; this matrix
has 32 rows, that refer to input pi at time t1, and 32 ∗ 5 columns, that correspond to 32
hypothetical keys and 5 bits for each one. Consumptions are 0.375 if the corresponding
bit is 0, 0.5 if it is 1.

• Correlation between t and H is computed, to reveal the key.

The attack that allows to recover one bit of the key at each round, in tridimensional notation,
is a (1, 2, 3) attack. Indeed:

- sm = 1, because to implement this attack an attacker uses the first statistical moment
(but it works also using second and third statistical moments);

- sp = 2, because the useful consumptions are recovered in two points, namely at level
of the XOR gate of the first circuit, and at level of the XOR gate of the second circuit;

- ti = 3, because the attacker recover the consumptions in three time slots, two time
slots in one of the two circuits, and one time slot in the other one.

The attack explained before is an application of this (1, 2, 3) attack on all five rounds.

4.2.8 Conclusions

In this section, two main arguments have been treated as an attempt to model glitches at
design-time: Hazard Algebra and models that come from it and the order of an attack.
In subsection 4.2.4 the unrealistic worst-case scenario of propagation of glitches is over-
come, thanks to the new approach with propagation sequences. The worst-case is defined
on an “ideal circuit”, namely a circuit in which we are interested only in its gates and relative
connections. Differently, the signal propagation described with the propagation sequences
is defined on circuits that are not ideal, but of which are considered also the intrinsic prop-
erties, as the length of wires. Indeed, on the ideal circuit different propagation sequences
are defined, such that they respect all possible different propagation of signal (and propa-
gation of glitches) that can happen in a real circuit with the same gates and connections
of the ideal one. In this chapter, we have given a mathematical description of propagation
sequences as quotient of the set of combinations, and we defined also a new algorithm to
count the glitches in the case of a particular propagation sequence, that operates similarly to
the glitch-counting algorithm defined by Brzozowski and Ésik in [40]. In particular, the main
contribution that propagation sequences give is the possibility to better quantify the amount
of critical leakages in a circuit.

HECTOR D3.1 Page 113 of 129

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

Table 4.9: Consumptions of an atomic circuit of χ with three shares, with propagation se-
quence 1324576 and in accordance with Power Consumption Model 2.

m1 m2 m3 m4 m5 consumption in each time slot

T1 TS2 TS3 TS4 TS5 TS6 TS7 TS8 TS9 TS10 TS11 TS12 TS13 TS14
0 0 0 0 0 0.5 0.25 0.25 0 0 0.5 0.25 0.25 0.5 0.5 0.25 0.25 0 0
0 0 0 0 1 0.5 0.25 0.25 0 0 0.5 0.25 0.25 0.5 0.5 0.25 0.25 0.5 0.5
0 0 0 1 0 0.5 0.25 0.25 0 0 0.5 0.25 0.25 0.5 0.5 0.25 0.25 0 0
0 0 0 1 1 0.5 0.25 0.25 0 0 0.5 0.25 0.25 0.5 0.5 0.25 0.25 0.5 0.5
0 0 1 0 0 0.5 0.25 0.25 0.5 0.5 0.5 0.25 0.25 0 0 0.25 0.25 0 0
0 0 1 0 1 0.5 0.25 0.25 0.5 0.5 0.5 0.25 0.25 0 0 0.25 0.25 0.5 0.5
0 0 1 1 0 0.5 0.25 0.25 0.5 0.5 0.5 0.25 0.25 0 0 0.25 0.25 0 0
0 0 1 1 1 0.5 0.25 0.25 0.5 0.5 0.5 0.25 0.25 0 0 0.25 0.25 0.5 0.5
0 1 0 0 0 0.5 0.25 0.25 0 0 0.5 0.25 0.25 .5 0.5 0.25 0.25 0 0
0 1 0 0 1 0.5 0.25 0.25 0 0 0.5 0.25 0.25 0.5 0.5 0.25 0.25 0.5 0.5
0 1 0 1 0 0.5 0.25 0.25 0 0 0.5 0.25 0.25 0.5 0.5 0.25 0.25 0 0
0 1 0 1 1 0.5 0.25 0.25 0 0 0.5 0.25 0.25 0.5 0.5 0.25 0.25 0.5 0.5
0 1 1 0 0 0.5 0.25 0.25 0.5 0.5 0.5 0.25 0.25 0 0 0.25 0.25 0 0
0 1 1 0 1 0.5 0.25 0.25 0.5 0.5 0.5 0.25 0.25 0 0 0.25 0.25 0.5 0.5
0 1 1 1 0 0.5 0.25 0.25 0.5 0.5 0.5 0.25 0.25 0 0 0.25 0.25 0 0
0 1 1 1 1 0.5 0.25 0.25 0.5 0.5 0.5 0.25 0.25 0 0 0.25 0.25 0.5 0.5
1 0 0 0 0 0.5 0.25 0.25 0 0 0.5 0.25 0.25 0.5 0.5 0.25 0.25 0 0
1 0 0 0 1 0.5 0.25 0.25 0 0 0.5 0.25 0.25 0.5 0.5 0.25 0.25 0.5 0.5
1 0 0 1 0 0.5 0.25 0.25 0 0 0.5 0.25 0.25 0.5 0.5 0.25 0.25 0 0
1 0 0 1 1 0.5 0.25 0.25 0 0 0.5 0.25 0.25 0.5 0.5 0.25 0.25 0.5 0.5
1 0 1 0 0 0.5 0.25 0.25 0.5 0.5 0.5 0.25 0.25 0 0 0.25 0.25 0 0
1 0 1 0 1 0.5 0.25 0.25 0.5 0.5 0.5 0.25 0.25 0 0 0.25 0.25 0.5 0.5
1 0 1 1 0 0.5 0.25 0.25 0.5 0.5 0.5 0.25 0.25 0 0 0.25 0.25 0 0
1 0 1 1 1 0.5 0.25 0.25 0.5 0.5 0.5 0.25 0.25 0 0 0.25 0.25 0.5 0.5
1 1 0 0 0 0.5 0.25 0.25 0 0 0.5 0.25 0.25 0.5 0.5 0.25 0.25 0 0
1 1 0 0 1 0.5 0.25 0.25 0 0 0.5 0.25 0.25 0.5 0.5 0.25 0.25 0.5 0.5
1 1 0 1 0 0.5 0.25 0.25 0 0 0.5 0.25 0.25 0.5 0.5 0.25 0.25 0 0
1 1 0 1 1 0.5 0.25 0.25 0 0 0.5 0.25 0.25 0.5 0.5 0.25 0.25 0.5 0.5
1 1 1 0 0 0.5 0.25 0.25 0.5 0.5 0.5 0.25 0.25 0 0 0.25 0.25 0 0
1 1 1 0 1 0.5 0.25 0.25 0.5 0.5 0.5 0.25 0.25 0 0 0.25 0.25 0.5 0.5
1 1 1 1 0 0.5 0.25 0.25 0.5 0.5 0.5 0.25 0.25 0 0 0.25 0.25 0 0
1 1 1 1 1 0.5 0.25 0.25 0.5 0.5 0.5 0.25 0.25 0 0 0.25 0.25 0.5 0.5

Subsection 4.2.5 is principally based on the redefinition of the order of an attack. The main
effort was to give our interpretation of order respecting all the previous ones, namely the def-
initions based on the order of the statistical moment used, or the one based on the number
of probes placed in the circuit to analyse the signal. The goal was achieved introducing the
order of an attack as tridimensional point (sm, sp, ti), where sm is the order of the statisti-
cal moment used to implement the attack, sp is the number of points in the circuit that are
analysed and ti is the number of time instances considered. The last two variables depend
on the measuring instrument, and in particular sp depends on the spatial resolution of the
instrument and ti depends on the time resolution. In this way, with the second variable of the
triplet the attention is posed on the previous definition based on the number of probes placed
on the wires of the circuit, while the other two respect the definition of order based on the
statistical moment, with ti denoting a v−variate attack, where v are different time instances
in the same clock cycle.
In subsection 4.2.7, these arguments have been validated with some explicative examples
on the nonlinear part of KECCAK, in conjunction with the application of the power consump-
tion models defined in subsection 4.2.6, that are introduced with the aim to create some
models for the collection of consumptions during the execution of the cryptographic algo-
rithms.
Some possible future developments about propagation sequences can be some insights of
the topic. For example an interesting argument can be the deduction of an equation, applica-
ble to any feedback-free circuit, with which calculate the number of propagation sequences
in it, without recover each time all combinations and counting the number of propagation
sequences as the cardinality of the quotient set. Another example can be a study about
”the quality” of the propagation sequences in a circuit, namely if there are some propagation
sequences that are more possible or better detectable in it rather than some others.
Instead, the order of an attack has been a widespread topic in all the literature until now, and
then we suppose that this is an argument that will be treated again in different forms. We

HECTOR D3.1 Page 114 of 129

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

foresee the appearance of some further specifications about our interpretation of the order
as a tridimensional point, or some other new and different definitions. However, we think that
at the moment our characterization of the order is the most exhaustive ever appeared, being
able to conjunct all the previous definitions in only one. An argument that can be developed
starting from our definition is a study of the differences between an attack implemented
placing the ideal probes in a unique clock cycle, or taking information in more clock cycles.
Moreover, another argument that could be better study is the conjunction between ideal
probes and real instruments, with different bandwidth.
We can also propose some developments about the power consumption models, since they
do not hold all possibilities of consumptions collection. For example, in our four models
there is none that represents an instrument with a high spatial resolution but a low time
resolution, i.e. an instrument that reads only a sum of all consumptions, but that can relieve
consumptions at level of all gates.

HECTOR D3.1 Page 115 of 129

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

Chapter 5

Summary and Conclusion

In this deliverable, we presented the cryptographic primitives proposed by HECTOR partners
to address the need for Authenticated Encryption. We elaborated about the reasons that
make these algorithms more efficient, more secure, and simpler to use compared with the
primitives usually used so far.
All the proposed algorithms, and in particular their latest variations fulfil the criteria listed in
HECTOR Deliverable D1.1. Namely:

• the algorithms support Authenticated Encryption with Associated Data, which means
that a portion of the data is protected for both integrity and confidentiality, and another
portion for integrity only;

• they are Single Pass, which means that a single elaboration of the message and single
primitive are sufficient;

• they can perform Online processing, which means that the size of the message does
not have to be known in advance.

Besides fulfilling these requirements, the underlying sponge construction used in the pro-
posed algorithms provides interesting benefits when compared to commonly used solutions.
The same cryptographic primitive can be used for several purposes, such as hashing, re-
seedable pseudo-random generation, key derivation, encryption, MAC computation and au-
thenticated encryption. Another benefit is that these algorithms no longer require to securely
combining different primitives to accomplish a task, reducing the risk of vulnerabilities.

As an illustration, we explained how a poor combination of encryption and MAC catastrophi-
cally undermined the security of some largely used communication protocols. A final benefit
is that it allows to focus the efforts for the protection against side-channel attacks onto a
single primitive, while the sponge construction are also easier to protect, making it easier to
derive such countermeasures.
Side-channel attacks constitute a very powerful class of attacks against cryptographic de-
vices that exploit some kind of physical information leaked by the device itself (e.g. timing
information, power consumption, or electromagnetic emanation). Nowadays side-channel
attacks pose an important practical threat against devices in real-life use cases.

We spent the second part of this Deliverable analysing those attacks and proposing solu-
tions in order to make devices more robust against them. We presented an overview of the

HECTOR D3.1 Page 116 of 129

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

state of the art of those attacks and introduced some new techniques, which could under-
mine the security of devices if not properly taken into account. We focused on system-level
countermeasures able to counter the known attacks.
Besides studying attacks and proposing countermeasures, we tackled the difficulties associ-
ated with the implementation of devices that need to be robust against side-channel attacks,
again aiming at improving the overall efficiency. Side-channel protections affect costs and
performances. Countermeasures usually require to increase either the area or the latency
of the implemented cryptographic block (or both). Often more important, protections also
significantly impact the development and verification schedule of designs.

Relying exclusively on silicon samples to verify the effectiveness of countermeasures is sim-
ply not acceptable, because of the late feedback and the costs involved in a silicon iteration.
In order to overcome this issue, we proposed a hardware design methodology allowing to
take into account and assess the side-channel properties of the resulting devices. Such
methodology is based on functional languages, which can close the gap between the high-
level specifications and the actual hardware implementation.
We investigated the methodology having in mind the requirements from HECTOR Deliver-
able D1.1:

• provide reasonably accurate early feedback;

• allow quick fact-based comparison of different solutions that can be implemented against
a specific side-channel attack;

• help the refinement of attack and evaluation techniques, in order to prototype and ease
the final on-silicon evaluations;

• provide detailed view of the side-channel behaviour of internal blocks, in order to easy
the analysis and the fixing of vulnerabilities.

In view of supporting the design-time evaluation of side-channel properties, we also pro-
posed a model to tackle one of the most critical sources of leakage in hardware implemen-
tations: glitches on combinational logic.

Design-time side-channel evaluation methodologies cannot and are not aiming at replacing
on-silicon evaluations, but rather complementing them. A final assessment on the target
physical device is still needed. The goal here is to guide the implementation of the secure
solution, by supporting the designer in selecting the right trade-off between costs and pro-
tection, leading to the right practical protection in the most efficient and cost-optimized way.

HECTOR D3.1 Page 117 of 129

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

Chapter 6

List of Abbreviations
AD Associated Data
AE Authenticated Encryption
AES Advanced Encryption Standard
API Application Programming Interface
ASIC Application Specific Integrated Circuit
CCM Counter with CBC-MAC
DPA Differential Power Analysis
EC European Commission
ECC Elliptic Curve Cryptography
ECDSA Elliptic Curve Digital Signature Algorithm
EMFI Electromagnetic Fault Injection
FPGA Field Programmable Logic Array
FSM Finite State Machine
GCM Galois/Counter Mode
GE Gate Equivalent
HDL Hardware Description Language
IP Intellectual Property
IV Initialization Vector
LUT Look-Up Table
MAC Message Authentication Code
NIST National Institute of Standards and Technology
PUF Physical Unclonable Function
RTL Register-Transfer Level
SEI Squared Euclidian Imbalance
SFA Statistical Fault Attack
SHA Secure Hash Algorithm
SPA Simple Power Analysis
SUV Secret and Unique Value
TBD to be determined
TI Threshold Implementation
TRNG True Random Number Generator

HECTOR D3.1 Page 118 of 129

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

Bibliography

[1] Diac - directions in authenticated ciphers. http://hyperelliptic.org/DIAC/.

[2] Farzaneh Abed, Scott R. Fluhrer, Christian Forler, Eik List, Stefan Lucks, David A.
McGrew, and Jakob Wenzel. Pipelineable on-line encryption. In Carlos Cid and Chris-
tian Rechberger, editors, Fast Software Encryption - 21st International Workshop, FSE
2014, London, UK, March 3-5, 2014. Revised Selected Papers, volume 8540 of Lec-
ture Notes in Computer Science, pages 205–223. Springer, 2014.

[3] Yasemin Acar, Michael Backes, Sven Bugiel, Sascha Fahl, Patrick Drew McDaniel, and
Matthew Smith. SoK: Lessons Learned from Android Security Research for Appified
Software Platforms. In IEEE Symposium on Security and Privacy – S&P 2016, pages
433–451, 2016.

[4] Megha Agrawal, Donghoon Chang, and Somitra Sanadhya. sp-AELM: Sponge based
authenticated encryption scheme for memory constrained devices. In Ernest Foo and
Douglas Stebila, editors, Information Security and Privacy – ACISP 2015, volume
9144 of LNCS, pages 451–468. Springer, 2015.

[5] Nadhem J. AlFardan and Kenneth G. Paterson. Lucky thirteen: Breaking the TLS and
DTLS record protocols. In 2013 IEEE Symposium on Security and Privacy, SP 2013,
Berkeley, CA, USA, May 19-22, 2013, pages 526–540. IEEE Computer Society, 2013.

[6] Elena Andreeva, Begül Bilgin, Andrey Bogdanov, Atul Luykx, Florian Mendel, Bart
Mennink, Nicky Mouha, Qingju Wang, and Kan Yasuda. PRIMATEs v1.02, Submission
to the CAESAR Competition. http://primates.ae/wp-content/uploads/
primatesv1.02.pdf.

[7] Elena Andreeva, Andrey Bogdanov, Atul Luykx, Bart Mennink, Elmar Tischhauser,
and Kan Yasuda. Parallelizable and authenticated online ciphers. In Kazue Sako
and Palash Sarkar, editors, Advances in Cryptology - ASIACRYPT 2013 - 19th In-
ternational Conference on the Theory and Application of Cryptology and Information
Security, Bengaluru, India, December 1-5, 2013, Proceedings, Part I, volume 8269 of
Lecture Notes in Computer Science, pages 424–443. Springer, 2013.

[8] Elena Andreeva, Joan Daemen, Bart Mennink, and Gilles Van Assche. Security of
keyed sponge constructions using a modular proof approach. In FSE 2015, pages
364–384, 2015.

[9] Ralph Ankele and Robin Ankele. Software benchmarking of the 2nd round CAESAR
candidates. Cryptology ePrint Archive, Report 2016/740, 2016.

HECTOR D3.1 Page 119 of 129

http://hyperelliptic.org/DIAC/
http://primates.ae/wp-content/uploads/primatesv1.02.pdf
http://primates.ae/wp-content/uploads/primatesv1.02.pdf

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

[10] Seyed Hosein Attarzadeh Niaki and Ingo Sander. Co-simulation of embedded systems
in a heterogeneous MoC-based modeling framework. In 2011 6th IEEE International
Symposium on Industrial Embedded Systems (SIES), pages 238–247. IEEE, June
2011.

[11] Adam J. Aviv, Benjamin Sapp, Matt Blaze, and Jonathan M. Smith. Practicality of
Accelerometer Side Channels on Smartphones. In Annual Computer Security Appli-
cations Conference – ACSAC 2012, pages 41–50, 2012.

[12] Christiaan Baaij and Jan Kuper. Using rewriting to synthesize functional languages
to digital circuits. In Jay McCarthy, editor, Trends in functional programming, volume
8322 of Lecture notes in computer science, pages 17–33, Berlin, Germany, 2014.
Springer.

[13] Josep Balasch, Benedikt Gierlichs, Oscar Reparaz, and Ingrid Verbauwhede. DPA,
Bitslicing and Masking at 1 GHz. In Cryptographic Hardware and Embedded Systems
– CHES 2015, pages 599–619, 2015.

[14] Elaine B Barker, William C Barker, William E Burr, W Timothy Polk, and Miles E Smid.
Sp 800-57. recommendation for key management, part 1: General (revised). 2007.

[15] AliGalip Bayrak, Francesco Regazzoni, David Novo, and Paolo Ienne. Sleuth: Au-
tomated verification of software power analysis countermeasures. In Guido Bertoni
and Jean-Sbastien Coron, editors, Cryptographic Hardware and Embedded Systems
- CHES 2013, volume 8086 of Lecture Notes in Computer Science, pages 293–310.
Springer Berlin Heidelberg, 2013.

[16] Pierre Belgarric, Pierre-Alain Fouque, Gilles Macario-Rat, and Mehdi Tibouchi. Side-
Channel Analysis of Weierstrass and Koblitz Curve ECDSA on Android Smartphones.
In Topics in Cryptology – CT-RSA 2016, pages 236–252, 2016.

[17] Mihir Bellare, Anand Desai, E. Jokipii, and Phillip Rogaway. A concrete security treat-
ment of symmetric encryption. In 38th Annual Symposium on Foundations of Com-
puter Science, FOCS ’97, Miami Beach, Florida, USA, October 19-22, 1997, pages
394–403. IEEE Computer Society, 1997.

[18] Mihir Bellare, Joe Kilian, and Phillip Rogaway. The security of the cipher block chaining
message authentication code. J. Comput. Syst. Sci., 61(3):362–399, 2000.

[19] Mihir Bellare, Phillip Rogaway, and David Wagner. The EAX mode of operation. In
Bimal K. Roy and Willi Meier, editors, Fast Software Encryption, 11th International
Workshop, FSE 2004, Delhi, India, February 5-7, 2004, Revised Papers, volume 3017
of Lecture Notes in Computer Science, pages 389–407. Springer, 2004.

[20] Daniel J. Bernstein and Tanja Lange (editors). eBACS: ECRYPT Benchmarking of
Cryptographic Systems. https://bench.cr.yp.to. (accessed 15 September
2016).

[21] Guido Bertoni, Joan Daemen, Nicolas Debande, Than-Ha Le, Michaël Peeters, and
Gilles Van Assche. Power Analysis of Hardware Implementations Protected with Se-
cret Sharing. In 45th Annual IEEE/ACM International Symposium on Microarchitecture
Workshops (MICROW), pages 9–16. IEEE Computer Society, 2012.

HECTOR D3.1 Page 120 of 129

https://bench.cr.yp.to

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

[22] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Keyak hard-
ware implementations – git repository. https://github.com/guidobertoni/
caesar_gmu_vhdl.

[23] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Sponge func-
tions. In ECRYPT hash workshop, volume 2007. Citeseer, 2007.

[24] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Building power
analysis resistant implementations of KECCAK. Second SHA-3 condidate conference,
August 2010.

[25] Guido Bertoni, Joan Daemen, Michael Peeters, and Gilles Van Assche. Cryptographic
sponge functions (Version 0.1). http://sponge.noekeon.org/, 2011.

[26] Guido Bertoni, Joan Daemen, Michael Peeters, and Gilles Van Assche. The Keccak
SHA-3 submission. http://keccak.noekeon.org/, 2011.

[27] Guido Bertoni, Joan Daemen, Michael Peeters, and Gilles Van Assche. Permutation-
based encryption, authentication and authenticated encryption. In DIAC 2012, pages
159–170. na, 2012.

[28] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Caesar sub-
mission: KETJE V2. http://ketje.noekeon.org/, September 2016.

[29] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Caesar sub-
mission: KEYAK V2. http://keyak.noekeon.org/, September 2016.

[30] Guido Bertoni, Joan Daemen, Michal Peeters, and Gilles Van Assche. Duplexing the
sponge: Single-pass authenticated encryption and other applications. In In Selected
Areas in Cryptography, pages 320–337.

[31] Guido Bertoni and Marco Martinoli. A Metodology for the Characterization of Leakages
in Combinatorial Logic. 2016.

[32] Sebastian Biedermann, Stefan Katzenbeisser, and Jakub Szefer. Hard Drive Side-
Channel Attacks Using Smartphone Magnetic Field Sensors. In Financial Cryptogra-
phy – FC 2015, pages 489–496, 2015.

[33] Begül Bilgin, Joan Daemen, Ventzislav Nikov, Svetla Nikova, Vincent Rijmen, and
Gilles Van Assche. Efficient and First-Order DPA Resistant Implementations of Kec-
cak. In CARDIS 2014, LNCS. Springer, 2014.

[34] Begül Bilgin, Benedikt Gierlichs, Svetla Nikova, Ventzislav Nikov, and Vincent Rijmen.
A More Efficient AES Threshold Implementation. In AFRICACRYPT 2014, volume
8469 of LNCS. Springer, 2014.

[35] Begül Bilgin, Benedikt Gierlichs, Svetla Nikova, Ventzislav Nikov, and Vincent Rij-
men. Higher-Order Threshold Implementations. In ASIACRYPT 2014, volume 8874
of LNCS. Springer, 2014.

[36] Begül Bilgin, Benedikt Gierlichs, Svetla Nikova, Ventzislav Nikov, and Vincent Rijmen.
Trade-Offs for Threshold Implementations Illustrated on AES. Computer-Aided Design
of Integrated Circuits and Systems, IEEE Transactions on, 34(7), July 2015.

HECTOR D3.1 Page 121 of 129

https://github.com/guidobertoni/caesar_gmu_vhdl
https://github.com/guidobertoni/caesar_gmu_vhdl
http://sponge.noekeon.org/
http://keccak.noekeon.org/
http://ketje.noekeon.org/
http://keyak.noekeon.org/

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

[37] Begül Bilgin, Svetla Nikova, Ventzislav Nikov, Vincent Rijmen, and Georg Stütz.
Threshold Implementations of All 3x3 and 4x4 S-Boxes. In CHES 2012, volume 7428
of LNCS. Springer, 2012.

[38] Per Bjesse, Koen Claessen, Mary Sheeran, and Satnam Singh. Lava: Hardware
design in haskell. In Proceedings of the Third ACM SIGPLAN International Conference
on Functional Programming, ICFP ’98, pages 174–184, New York, NY, USA, 1998.
ACM.

[39] Eric Brier, Christophe Clavier, and Francis Olivier. Correlation power analysis with a
leakage model. In CHES 2004, pages 16–29, 2004.

[40] Janusz Brzozowski and Zoltán Ésik. Hazard algebras. Formal Methods in System
Design, 23(3):223–256, 2003.

[41] Liang Cai and Hao Chen. TouchLogger: Inferring Keystrokes on Touch Screen from
Smartphone Motion. In USENIX Workshop on Hot Topics in Security – HotSec, 2011.

[42] Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. Template attacks. In CHES 2002,
pages 13–28, 2002.

[43] Thomas De Cnudde, Begül Bilgin, Oscar Reparaz, Ventzislav Nikov, and Svetla
Nikova. Higher-Order Threshold Implementation of the AES S-Box. In CARDIS 2015,
2015.

[44] Thomas De Cnudde, Oscar Reparaz, Begül Bilgin, Svetla Nikova, Ventzislav Nikov,
and Vincent Rijmen. Masking AES with d+1 Shares in Hardware. In CHES 2016,
2016.

[45] Quynh H Dang. Secure hash standard. National Institute of Standards and Technol-
ogy, Gaithersburg, MD, Tech. Rep. August, 2015.

[46] Christoph Dobraunig, Maria Eichlseder, Stefan Mangard, and Florian Mendel. On the
security of fresh re-keying to counteract side-channel and fault attacks. In CARDIS
2014, pages 233–244, 2014.

[47] Christoph Dobraunig, Maria Eichlseder, Stefan Mangard, Florian Mendel, and Thomas
Unterluggauer. ISAP – Authenticated Encryption Inherently Secure Against Passive
Side-Channel Attacks. https://eprint.iacr.org/2016/952. Accessed: 2017-
01-20.

[48] Christoph Dobraunig, François Koeune, Stefan Mangard, Florian Mendel, and
François-Xavier Standaert. Towards fresh and hybrid re-keying schemes with beyond
birthday security. In CARDIS 2015, volume 9514 of LNCS, pages 225–241. Springer,
2015.

[49] Christoph Dobraunig, Florian Mendel, Martin Schläffer, and Maria Eichlseder. Ascon
website. http://ascon.iaik.tugraz.at/index.html, 12 2013. Accessed:
2016/12/10.

[50] Christoph Dobraunig, Florian Mendel, Martin Schläffer, and Maria Eichlseder. Ascon
v1.2 – submission to round 3 of the CAESAR competition. http://ascon.iaik.
tugraz.at/files/asconv12.pdf, 2016.

HECTOR D3.1 Page 122 of 129

https://eprint.iacr.org/2016/952
http://ascon.iaik.tugraz.at/index.html
http://ascon.iaik.tugraz.at/files/asconv12.pdf
http://ascon.iaik.tugraz.at/files/asconv12.pdf

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

[51] Christoph Dobraunig, Florian Mendel, Martin Schläffer, Hannes Gross, and Maria
Eichlseder. Ascon hardware implementations – git repository. https://github.
com/IAIK/ascon_hardware, 12 2014. Accessed: 2016/12/10.

[52] Thai Duong and Juliano Rizzo. Here come the ⊕ ninjas. https://bug665814.
bugzilla.mozilla.org/attachment.cgi?id=540839, 2011. Unpublished
manuscript.

[53] Stefan Dziembowski and Krzysztof Pietrzak. Leakage-resilient cryptography. In FOCS
2008, pages 293–302, 2008.

[54] Hassan Eldib, Chao Wang, and Patrick Schaumont. Formal verification of software
countermeasures against side-channel attacks. ACM Trans. Softw. Eng. Methodol.,
24(2):11:1–11:24, December 2014.

[55] Levent Erkök, Magnus Carlsson, and Adam Wick. Hardware/software co-verification
of cryptographic algorithms using Cryptol. In Formal Methods in Computer Aided
Design, FMCAD’09, Austin, TX, USA, pages 188–191. IEEE, November 2009.

[56] Sebastian Faust, Krzysztof Pietrzak, and Joachim Schipper. Practical leakage-resilient
symmetric cryptography. In CHES 2012, pages 213–232, 2012.

[57] Niels Ferguson. Collision attacks on ocb. http://www.cs.ucdavis.edu/

˜rogaway/ocb/fe02.pdf, 2002. Unpublished manuscript.

[58] Ewan Fleischmann, Christian Forler, and Stefan Lucks. Mcoe: A family of almost
foolproof on-line authenticated encryption schemes. In Anne Canteaut, editor, Fast
Software Encryption - 19th International Workshop, FSE 2012, Washington, DC, USA,
March 19-21, 2012. Revised Selected Papers, volume 7549 of Lecture Notes in Com-
puter Science, pages 196–215. Springer, 2012.

[59] Thomas Fuhr, Éliane Jaulmes, Victor Lomné, and Adrian Thillard. Fault attacks on
AES with faulty ciphertexts only. In Fault Diagnosis and Tolerance in Cryptography –
FDTC 2013, pages 108–118, 2013.

[60] Kris Gaj and ATHENa Team. ATHENa: Automated Tool for Hardware Evaluation,
2016. https://cryptography.gmu.edu/athena/.

[61] Qian Ge, Yuval Yarom, David Cock, and Gernot Heiser. A Survey of Microarchitectural
Timing Attacks and Countermeasures on Contemporary Hardware. IACR Cryptology
ePrint Archive, 2016:613, 2016.

[62] Catherine H. Gebotys, Simon Ho, and C. C. Tiu. EM Analysis of Rijndael and ECC on
a Wireless Java-Based PDA. In Cryptographic Hardware and Embedded Systems –
CHES 2005, pages 250–264, 2005.

[63] Daniel Genkin, Lev Pachmanov, Itamar Pipman, Eran Tromer, and Yuval Yarom.
ECDSA Key Extraction from Mobile Devices via Nonintrusive Physical Side Chan-
nels. In Conference on Computer and Communications Security – CCS 2016, pages
1626–1638, 2016.

[64] Andy Gill. Declarative FPGA circuit synthesis using Kansas Lava. In The International
Conference on Engineering of Reconfigurable Systems and Algorithms, July 2011.

HECTOR D3.1 Page 123 of 129

https://github.com/IAIK/ascon_hardware
https://github.com/IAIK/ascon_hardware
https://bug665814.bugzilla.mozilla.org/attachment.cgi?id=540839
https://bug665814.bugzilla.mozilla.org/attachment.cgi?id=540839
http://www.cs.ucdavis.edu/~rogaway/ocb/fe02.pdf
http://www.cs.ucdavis.edu/~rogaway/ocb/fe02.pdf
https://cryptography.gmu.edu/athena/

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

[65] Virgil D. Gligor and Pompiliu Donescu. Fast encryption and authentication: XCBC
encryption and XECB authentication modes. In Mitsuru Matsui, editor, Fast Software
Encryption, 8th International Workshop, FSE 2001 Yokohama, Japan, April 2-4, 2001,
Revised Papers, volume 2355 of Lecture Notes in Computer Science, pages 92–108.
Springer, 2001.

[66] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random func-
tions. J. ACM, 33(4):792–807, 1986.

[67] Gabriel Goller and Georg Sigl. Side Channel Attacks on Smartphones and Embedded
Devices Using Standard Radio Equipment. In Constructive Side-Channel Analysis and
Secure Design – COSADE 2015, pages 255–270, 2015.

[68] Gilbert Goodwill, Benjamin Jun, Josh Jaffe, and Pankaj Rohatgi. A Testing Method-
ology for Side-Channel Resistance Validation. In NIST Non-Invasive Attack Testing
Workshop, 2011.

[69] Louis Goubin and Jacques Patarin. DES and Differential Power Analysis The Dupli-
cation Method. In Cryptographic Hardware and Embedded Systems, volume 1717 of
LNCS. Springer, 1999.

[70] Hannes Groß, Erich Wenger, Christoph Dobraunig, and Christoph Ehrenhofer. Suit up!
- Made-to-measure hardware implementations of ASCON. In Digital System Design –
DSD 2015, pages 645–652. IEEE Computer Society, 2015.

[71] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. Cache Template Attacks: Au-
tomating Attacks on Inclusive Last-Level Caches. In USENIX Security Symposium
2015, pages 897–912, 2015.

[72] Shay Gueron and Yehuda Lindell. GCM-SIV: full nonce misuse-resistant authenticated
encryption at under one cycle per byte. In Indrajit Ray, Ninghui Li, and Christopher
Kruegel, editors, Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security, Denver, CO, USA, October 12-6, 2015, pages 109–
119. ACM, 2015.

[73] Frank K Gürkaynak, Kris Gaj, Beat Muheim, Ekawat Homsirikamol, Christoph Keller,
Marcin Rogawski, Hubert Kaeslin, and Jens-Peter Kaps. Lessons learned from de-
signing a 65 nm asic for third round sha-3 candidates. 2012.

[74] Viet Tung Hoang, Ted Krovetz, and Phillip Rogaway. Robust authenticated-encryption
AEZ and the problem that it solves. In Elisabeth Oswald and Marc Fischlin, editors,
Advances in Cryptology - EUROCRYPT 2015 - 34th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Sofia, Bulgaria, April 26-
30, 2015, Proceedings, Part I, volume 9056 of Lecture Notes in Computer Science,
pages 15–44. Springer, 2015.

[75] Viet Tung Hoang, Reza Reyhanitabar, Phillip Rogaway, and Damian Vizár. Online
authenticated-encryption and its nonce-reuse misuse-resistance. In Rosario Gennaro
and Matthew Robshaw, editors, Advances in Cryptology - CRYPTO 2015 - 35th Annual
Cryptology Conference, Santa Barbara, CA, USA, August 16-20, 2015, Proceedings,
Part I, volume 9215 of Lecture Notes in Computer Science, pages 493–517. Springer,
2015.

HECTOR D3.1 Page 124 of 129

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

[76] Avesta Hojjati, Anku Adhikari, Katarina Struckmann, Edward Chou, Thi Ngoc Tho
Nguyen, Kushagra Madan, Marianne S. Winslett, Carl A. Gunter, and William P. King.
Leave Your Phone at the Door: Side Channels that Reveal Factory Floor Secrets. In
Conference on Computer and Communications Security – CCS 2016, pages 883–894,
2016.

[77] Michael Hutter and Jörn-Marc Schmidt. The Temperature Side Channel and Heating
Fault Attacks. In Smart Card Research and Advanced Applications – CARDIS 2013,
pages 219–235, 2013.

[78] Yuval Ishai, Amit Sahai, and David Wagner. Private Circuits: Securing Hardware
against Probing Attacks. In Advances in Cryptology - CRYPTO 2003, volume 2729 of
LNCS. Springer, 2003.

[79] Suman Jana and Vitaly Shmatikov. Memento: Learning Secrets from Process Foot-
prints. In IEEE Symposium on Security and Privacy – S&P 2012, pages 143–157,
2012.

[80] Charanjit S. Jutla. Encryption modes with almost free message integrity. In Birgit Pfitz-
mann, editor, Advances in Cryptology - EUROCRYPT 2001, International Conference
on the Theory and Application of Cryptographic Techniques, Innsbruck, Austria, May
6-10, 2001, Proceeding, volume 2045 of Lecture Notes in Computer Science, pages
529–544. Springer, 2001.

[81] Charanjit S. Jutla. Encryption modes with almost free message integrity. J. Cryptology,
21(4):547–578, 2008.

[82] Paul C. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and
Other Systems. In Advances in Cryptology – CRYPTO 1996, pages 104–113, 1996.

[83] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential Power Analysis. In
Advances in Cryptology – CRYPTO 1999, pages 388–397, 1999.

[84] Hugo Krawczyk. The order of encryption and authentication for protecting communica-
tions (or: How secure is ssl?). In Joe Kilian, editor, Advances in Cryptology - CRYPTO
2001, 21st Annual International Cryptology Conference, Santa Barbara, California,
USA, August 19-23, 2001, Proceedings, volume 2139 of Lecture Notes in Computer
Science, pages 310–331. Springer, 2001.

[85] Xun Li, Vineeth Kashyap, Jason K. Oberg, Mohit Tiwari, Vasanth Ram Rajarathinam,
Ryan Kastner, Timothy Sherwood, Ben Hardekopf, and Frederic T. Chong. Sapper: A
language for hardware-level security policy enforcement. In Proceedings of the 19th
International Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’14, pages 97–112, New York, NY, USA, 2014. ACM.

[86] Xun Li, Mohit Tiwari, Jason K. Oberg, Vineeth Kashyap, Frederic T. Chong, Timothy
Sherwood, and Ben Hardekopf. Caisson: A hardware description language for secure
information flow. In Proceedings of the 32Nd ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, PLDI ’11, pages 109–120, New York, NY,
USA, 2011. ACM.

HECTOR D3.1 Page 125 of 129

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

[87] Zhonghai Lu, Ingo Sander, and Axel Jantsch. A case study of hardware and software
synthesis in ForSyDe. In Proceedings of the 15th International Symposium on System
Synthesis, pages 86–91, Kyoto, Japan, October 2002.

[88] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power Analysis Attacks - Re-
vealing the Secrets of Smart Cards. Springer, 2007.

[89] Philip Marquardt, Arunabh Verma, Henry Carter, and Patrick Traynor. (sp)iPhone:
Decoding Vibrations From Nearby Keyboards Using Mobile Phone Accelerometers. In
Conference on Computer and Communications Security – CCS 2011, pages 551–562,
2011.

[90] Marcel Medwed, Christophe Petit, Francesco Regazzoni, Mathieu Renauld, and
François-Xavier Standaert. Fresh re-keying II: securing multiple parties against side-
channel and fault attacks. In CARDIS 2011, pages 115–132, 2011.

[91] Marcel Medwed, François-Xavier Standaert, Johann Großschädl, and Francesco
Regazzoni. Fresh re-keying: Security against side-channel and fault attacks for low-
cost devices. In AFRICACRYPT 2010, pages 279–296, 2010.

[92] Maryam Mehrnezhad, Ehsan Toreini, Siamak Fayyaz Shahandashti, and Feng Hao.
Stealing PINs via Mobile Sensors: Actual Risk versus User Perception. CoRR,
abs/1605.05549, 2016.

[93] Yan Michalevsky, Aaron Schulman, Gunaa Arumugam Veerapandian, Dan Boneh, and
Gabi Nakibly. PowerSpy: Location Tracking Using Mobile Device Power Analysis. In
USENIX Security Symposium 2015, pages 785–800, 2015.

[94] Amir Moradi and Oliver Mischke. How far should theory be from practice? - Evaluation
of a countermeasure. CHES 2012. LNCS, vol. 7428:92–106, 2012.

[95] Amir Moradi, Axel Poschmann, San Ling, Christof Paar, and Huaxiong Wang. Pushing
the Limits: A Very Compact and a Threshold Implementation of AES. In Eurocrypt
2011, EUROCRYPT’11. Springer-Verlag, 2011.

[96] Tilo Müller and Michael Spreitzenbarth. FROST - Forensic Recovery of Scrambled
Telephones. In Applied Cryptography and Network Security – ACNS 2013, pages
373–388, 2013.

[97] Yuto Nakano, Youssef Souissi, Robert Nguyen, Laurent Sauvage, Jean-Luc Danger,
Sylvain Guilley, Shinsaku Kiyomoto, and Yutaka Miyake. A Pre-processing Composi-
tion for Secret Key Recovery on Android Smartphone. In Information Security Theory
and Practice – WISTP 2014, pages 76–91, 2014.

[98] NewAE Technology Inc. Fault Injection Raspberry PI. https://wiki.newae.com.
Accessed: 2016-08-03.

[99] Svetla Nikova, Christian Rechberger, and Vincent Rijmen. Threshold Implementa-
tions Against Side-Channel Attacks and Glitches. In Information and Communications
Security, volume 4307 of LNCS. Springer, 2006.

HECTOR D3.1 Page 126 of 129

https://wiki.newae.com

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

[100] Svetla Nikova, Vincent Rijmen, and Martin Schläffer. Secure Hardware Implementa-
tion of Nonlinear Functions in the Presence of Glitches. Journal of Cryptology, vol.
24:292–322, 2011.

[101] Colin O’Flynn. Fault Injection using Crowbars on Embedded Systems. IACR Cryptol-
ogy ePrint Archive, 2016:810, 2016.

[102] S. Ordas, L. Guillaume-Sage, and P. Maurine. Electromagnetic Fault Injection: The
Curse of Flip-Flops. Journal of Cryptographic Engineering, pages 1–15, 2016.

[103] Elisabeth Oswald, Stefan Mangard, Christoph Herbst, and Stefan Tillich. Practical
second-order DPA attacks for masked smart card implementations of block ciphers.
Lecture notes in computer science, pages 192–207, 2006.

[104] Daniel Otte. AVR crypto lib. http://avrcryptolib.das-labor.org. Accessed:
2016/01/13.

[105] Olivier Pereira, François-Xavier Standaert, and Srinivas Vivek. Leakage-resilient au-
thentication and encryption from symmetric cryptographic primitives. In CCS 2015,
pages 96–108, 2015.

[106] Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz, and Stefan Man-
gard. DRAMA: Exploiting DRAM Addressing for Cross-CPU Attacks. In USENIX Se-
curity Symposium 2016, pages 565–581, 2016.

[107] Krzysztof Pietrzak. A leakage-resilient mode of operation. In EUROCRYPT 2009,
pages 462–482, 2009.

[108] Bart Preneel and Paul C. van Oorschot. On the security of two MAC algorithms. In
EUROCRYPT ’96, pages 19–32, 1996.

[109] Jean-Jacques Quisquater and David Samyde. ElectroMagnetic Analysis (EMA): Mea-
sures and Counter-Measures for Smart Cards. In Smart Card Programming and Se-
curity – E-smart 2001, pages 200–210, 2001.

[110] Raphael Spreitzer, Veelasha Moonsamy, Thomas Korak, Stefan Mangard. SoK: Sys-
tematic Classification of Side-Channel Attacks on Mobile Devices. https://arxiv.
org/abs/1611.03748. Accessed: 2017-01-19.

[111] Oscar Reparaz. Detecting flawed masking schemes with leakage detection tests.
Cryptology ePrint Archive, Report 2016/282, 2016. http://eprint.iacr.org/
2016/282.

[112] Oscar Reparaz, Begül Bilgin, Svetla Nikova, Benedikt Gierlichs, and Ingrid Ver-
bauwhede. Consolidating Masking Schemes. In Advances in Cryptology - CRYPTO
2015 - 35th Annual Cryptology Conference, Santa Barbara, CA, USA, August 16-20,
2015, Proceedings, Part I, 2015.

[113] Lionel Rivière, Zakaria Najm, Pablo Rauzy, Jean-Luc Danger, Julien Bringer, and Lau-
rent Sauvage. High Precision Fault Injections on the Instruction Cache of ARMv7-M
Architectures. In Hardware Oriented Security and Trust – HOST 2015, pages 62–67,
2015.

HECTOR D3.1 Page 127 of 129

http://avrcryptolib.das-labor.org
https://arxiv.org/abs/1611.03748
https://arxiv.org/abs/1611.03748
http://eprint.iacr.org/2016/282
http://eprint.iacr.org/2016/282

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

[114] Phillip Rogaway. Efficient instantiations of tweakable blockciphers and refinements
to modes OCB and PMAC. In Pil Joong Lee, editor, Advances in Cryptology - ASI-
ACRYPT 2004, 10th International Conference on the Theory and Application of Cryp-
tology and Information Security, Jeju Island, Korea, December 5-9, 2004, Proceed-
ings, volume 3329 of Lecture Notes in Computer Science, pages 16–31. Springer,
2004.

[115] Phillip Rogaway, Mihir Bellare, and John Black. OCB: A block-cipher mode of operation
for efficient authenticated encryption. ACM Trans. Inf. Syst. Secur., 6(3):365–403,
2003.

[116] Phillip Rogaway and Thomas Shrimpton. A provable-security treatment of the key-
wrap problem. In Serge Vaudenay, editor, Advances in Cryptology - EUROCRYPT
2006, 25th Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques, St. Petersburg, Russia, May 28 - June 1, 2006, Proceedings,
volume 4004 of Lecture Notes in Computer Science, pages 373–390. Springer, 2006.

[117] Cyril Roscian, Alexandre Sarafianos, Jean-Max Dutertre, and Assia Tria. Fault Model
Analysis of Laser-Induced Faults in SRAM Memory Cells. In Fault Diagnosis and
Tolerance in Cryptography – FDTC 2013, pages 89–98, 2013.

[118] Lorenz Schwittmann, Viktor Matkovic, Matthäus Wander, and Torben Weis. Video
Recognition Using Ambient Light Sensors. In Pervasive Computing and Communica-
tion Workshops – PerCom 2016, pages 1–9, 2016.

[119] Laurent Simon, Wenduan Xu, and Ross Anderson. Don’t Interrupt Me While I Type:
Inferring Text Entered Through Gesture Typing on Android Keyboards. PoPETs,
2016:136–154, 2016.

[120] Sergei Skorobogatov. The Bumpy Road Towards iPhone 5c NAND Mirroring. CoRR,
abs/1609.04327, 2016.

[121] Sergei P. Skorobogatov and Ross J. Anderson. Optical Fault Induction Attacks. In
Cryptographic Hardware and Embedded Systems – CHES 2002, pages 2–12, 2002.

[122] Chen Song, Feng Lin, Zhongjie Ba, Kui Ren, Chi Zhou, and Wenyao Xu. My Smart-
phone Knows What You Print: Exploring Smartphone-based Side-channel Attacks
Against 3D Printers. In Conference on Computer and Communications Security –
CCS 2016, pages 895–907, 2016.

[123] Raphael Spreitzer, Simone Griesmayr, Thomas Korak, and Stefan Mangard. Exploit-
ing Data-Usage Statistics for Website Fingerprinting Attacks on Android. In Security
and Privacy in Wireless and Mobile Networks – WISEC 2016, pages 49–60, 2016.

[124] François-Xavier Standaert, Olivier Pereira, Yu Yu, Jean-Jacques Quisquater, Moti
Yung, and Elisabeth Oswald. Leakage resilient cryptography in practice. In Towards
Hardware-Intrinsic Security – Foundations and Practice, pages 99–134. Springer,
2010.

[125] Mostafa M. I. Taha and Patrick Schaumont. Side-channel countermeasure for SHA-3
at almost-zero area overhead. In HOST 2014, pages 93–96. IEEE Computer Society,
2014.

HECTOR D3.1 Page 128 of 129

D3.1 - Report on the Efficient Implementations of Crypto Algorithms & Building Blocks

[126] The CAESAR committee. CAESAR: Competition for authenticated encryption: Secu-
rity, applicability, and robustness. http://competitions.cr.yp.to/, 2014.

[127] Karim Tobich, Philippe Maurine, Pierre-Yvan Liardet, Mathieu Lisart, and Thomas Or-
das. Voltage Spikes on the Substrate to Obtain Timing Faults. In Digital System Design
– DSD 2013, pages 483–486, 2013.

[128] Elena Trichina. Combinational logic design for AES subbyte transformation on masked
data. IACR Cryptology ePrint Archive, 2003, 2003.

[129] Eran Tromer, Dag Arne Osvik, and Adi Shamir. Efficient Cache Attacks on AES, and
Countermeasures. J. Cryptology, 23:37–71, 2010.

[130] Jasper G. J. van Woudenberg, Marc F. Witteman, and Federico Menarini. Practical
Optical Fault Injection on Secure Microcontrollers. In Fault Diagnosis and Tolerance in
Cryptography – FDTC 2011, pages 91–99, 2011.

[131] Johannes Wolkerstorfer, Elisabeth Oswald, and Mario Lamberger. An ASIC Imple-
mentation of the AES SBoxes, pages 67–78. Springer Berlin Heidelberg, Berlin, Hei-
delberg, 2002.

[132] Qiuyu Xiao, Michael K. Reiter, and Yinqian Zhang. Mitigating Storage Side Channels
Using Statistical Privacy Mechanisms. In Conference on Computer and Communica-
tions Security – CCS 2015, pages 1582–1594, 2015.

[133] Lin Yan, Yao Guo, Xiangqun Chen, and Hong Mei. A Study on Power Side Channels
on Mobile Devices. CoRR, abs/1512.07972, 2015.

[134] Yuval Yarom and Katrina Falkner. FLUSH+RELOAD: A High Resolution, Low Noise,
L3 Cache Side-Channel Attack. In USENIX Security Symposium 2014, pages 719–
732, 2014.

[135] Danfeng Zhang, Yao Wang, G. Edward Suh, and Andrew C. Myers. A hardware design
language for timing-sensitive information-flow security. In Proceedings of the Twentieth
International Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’15, pages 503–516, New York, NY, USA, 2015. ACM.

[136] Nan Zhang, Kan Yuan, Muhammad Naveed, Xiao-yong Zhou, and XiaoFeng Wang.
Leave Me Alone: App-Level Protection against Runtime Information Gathering on An-
droid. In IEEE Symposium on Security and Privacy – S&P 2015, pages 915–930,
2015.

[137] Xiao-yong Zhou, Soteris Demetriou, Dongjing He, Muhammad Naveed, Xiaorui Pan,
XiaoFeng Wang, Carl A. Gunter, and Klara Nahrstedt. Identity, Location, Disease
and More: Inferring Your Secrets From Android Public Resources. In Conference on
Computer and Communications Security – CCS 2013, pages 1017–1028, 2013.

[138] Tong Zhu, Qiang Ma, Shanfeng Zhang, and Yunhao Liu. Context-free Attacks Using
Keyboard Acoustic Emanations. In Conference on Computer and Communications
Security – CCS 2014, pages 453–464, 2014.

HECTOR D3.1 Page 129 of 129

http://competitions.cr.yp.to/

	Introduction
	 Cryptographic Algorithms for Authenticated Encryption
	Authenticated Encryption
	Permutation-based Cryptography
	The sponge construction
	SHA-3

	Algorithms for Authenticated Encryption
	Keyak
	Ketje
	Ascon
	PRIMATEs

	AE implementations in Hardware
	Hardware interface
	Keyak
	Ketje
	Ascon
	PRIMATEs

	Improvements towards Efficiency

	System-level Vulnerabilities and Countermeasures
	Rationale
	Attacks
	Classification of Side-Channel-Attacks
	Basic Concept of Side-Channel Attacks
	Types of Side-Channel Information Leaks
	Passive Physical Attacks
	Active Physical Attacks

	Countermeasures
	Implementation-Level Countermeasures
	Protocol-Level Countermeasures

	Side-channel-aware HW Designs
	Functional Specifications of Cryptographic Circuits
	Motivations
	The current state of cryptographic algorithm design
	Implementing AES with CaSH
	Comparison of AES HW designs
	Implementing 1st order countermeasures in CaSH
	Conclusions

	Hazard Algebra
	Motivations
	Hazard Algebra
	LP Model
	Propagation Sequences
	Order of an Attack
	Power Consumption Models
	Application to Keccak
	Conclusions

	Summary and Conclusion
	List of Abbreviations

