

D2.2
ASIC and FPGA Designs

Accompanying Report

Project number: 644052

Project acronym: HECTOR

Project title:
HECTOR: Hardware enabled crypto and

randomness

Start date of the project: 1st March, 2015

Duration: 36 months

Programme: H2020-ICT-2014-1

Deliverable type: Demonstrator

Deliverable reference number: ICT-644052 / D2.2 / 1.0

Work package contributing to the

deliverable:
WP2

Due date: April 2017 – M26 (shifted from M24 to M26)

Actual submission date: May 3rd 2017

Responsible organisation: STR

Editor: Bernard KASSER

Dissemination level: PU

Revision: 1.0

The project HECTOR has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 644052.

Abstract:

This is the accompanying report to

Deliverable D2.2 of the HECTOR project,

which is of type demonstrator.

Keywords:

ASIC, FPGA, Design, TRNG, PUF, TERO,

PLL, DC

D2.2 – ASIC and FPGA Designs: Accompanying report

HECTOR D2.2 Page I

Editor

Bernard KASSER (STR)

Contributors (ordered according to beneficiary numbers)

Dave SINGELEE, Vladimir ROZIC, Bohan YANG (KUL)

Viktor FISCHER, Oto PEŤURA, Ugo MUREDDU (UJM)

Jean NICOLAI (STR)

Marek LABAN (MIC)

Disclaimer

The information in this document is provided “as is”, and no guarantee or warranty is given that the

information is fit for any particular purpose. The users thereof use the information at their sole risk and

liability.

D2.2 – ASIC and FPGA Designs: Accompanying report

HECTOR D2.2 Page II

Executive Summary

HECTOR deliverable D2.2 consists in the delivery of FPGA and ASIC designs for selected
TRNG(s) and PUF(s). Considering that the main deliverable is of type “Demonstrator”, and
that its dissemination level is “Confidential”, this accompanying report provides a short,
publically-available document to summarize the D2.2 design deliveries.

After a brief document introduction in chapter 1, chapter 2 focuses on the FPGA design
deliveries. It starts from the description of the data interfaces that have been defined for all
the FPGA designs implemented in the HECTOR evaluation platform. The PLL and DC TRNG
designs are then summarized, followed by the TERO-based PUF design.

Chapter 3 goes on to focus on the ASIC design deliveries. The HECTOR ASIC section lists
the TRNG and PUF designs that have been produced for the HECTOR ASIC test chips that
will be manufactured through the CMP multi-project scheme on ST 65nm technology. More
specifically, it describes the PLL, ELO and STR TRNG designs, as well as the TERO and RO
based PUF designs that have been produced. The ST ASIC designs lists additional TERO
and PLL TRNG designs integrated into additional ST silicon opportunities.

Chapter 4 wraps-up this document.

D2.2 – ASIC and FPGA Designs: Accompanying report

HECTOR D2.2 Page III

Table of Content

Executive Summary ... II

Table of Content .. III

List of Figures .. IV

List of Tables .. V

Chapter 1 Introduction ... 1

Chapter 2 Design of TRNGs and PUFs in FPGA .. 2

2.1 Data Interfaces... 2

2.1.1 Data interface dedicated to TRNG implementation and testing 2

2.1.2 Data interface dedicated to PUF implementation and testing 3

2.2 Implementation of TRNGs in FPGA ... 3

2.2.1 PLL TRNG ... 3

2.2.2 DC TRNG .. 5

2.3 Implementation of PUF in FPGA .. 6

2.3.1 TERO PUF ... 6

Chapter 3 Design of TRNGs and PUFs in ASIC ... 9

3.1 HECTOR ASICs ... 9

3.1.1 Implementation of TRNGs in HECTOR ASIC ... 9

3.1.2 Implementation of PUFs in HECTOR ASIC ...11

3.1.3 HECTOR ASIC #1 contents ..13

3.1.4 HECTOR ASIC #2 contents ..16

3.2 ST ASICs ... 16

3.2.1 ST ASIC #1 ...16

3.2.2 ST ASIC #2 ...18

Chapter 4 Summary and Conclusion .. 20

Chapter 5 List of Abbreviations .. 21

D2.2 – ASIC and FPGA Designs: Accompanying report

HECTOR D2.2 Page IV

List of Figures

Figure 1: TRNG data and control interface .. 2

Figure 2: PUF data and control interface ... 3

Figure 3: Architecture of the PLL TRNG .. 3

Figure 4: Floor plan of the HECTOR PLL TRNG ... 4

Figure 5: Architecture of the DC TRNG ... 5

Figure 6: Floor plan of the HECTOR DC TRNG... 6

Figure 7: Architecture of the TERO PUF.. 7

Figure 8: Floor plan of the TERO PUF ... 8

Figure 9: Architecture of the PLL TRNG in the HECTOR ASIC ... 9

Figure 10: Layout of the PLL TRNG in the HECTOR ASIC ...10

Figure 11: Architecture of the ELO TRNG in the HECTOR ASIC ..10

Figure 12: Layout of the ELO TRNG ...11

Figure 13: TERO test modules layout ...11

Figure 14: TERO and RO PUF structures ...12

Figure 15: TERO and RO PUF layout ...13

Figure 16: HECTOR ASIC pin-out ..14

Figure 17: Functional diagram of HECTOR ASIC interface ..15

Figure 18: Architecture of the TERO-TRNG implementation in the ST ASIC #116

Figure 19: Pin-out of the STR ASIC #1. ..17

Figure 20: Picture of ST ASIC #1 in DIL test package ..18

Figure 21: Architecture of the PLL-based TRNG in ST ASIC #2 ...19

D2.2 – ASIC and FPGA Designs: Accompanying report

HECTOR D2.2 Page V

List of Tables

Table 1: PLL TRNG implementation results ... 5

Table 2: TERO PUF implementation results .. 8

Table 3: Silicon cost for the different TEROs in ST ASIC #1 ...18

Table 4: Silicon cost for the different elements of the PLL-TRNG in ST ASIC #219

D2.2 – ASIC and FPGA Designs: Accompanying report

HECTOR D2.2 Page 1 of 21

Chapter 1 Introduction

HECTOR D2.2 consists in the delivery of FPGA and ASIC designs of selected TRNG(s) and
PUF(s). The deliverable is of type “Demonstrator”, and its dissemination level is
“Confidential”, i.e. restricted to members of the Consortium and the EU Commission
services.

This accompanying report provides a short, publically-available document, illustrating and
summarizing D2.2 design deliveries.

We acknowledge and agree with recommendation R3 from the expert report of the October
5th 2016 review, which stressed the importance of proper robustness assessments and
comparisons of HECTOR WP2 designs. These important activities will continue until the end
of the project and therefore were not the focus of D2.2 or this accompanying report.

D2.2 – ASIC and FPGA Designs: Accompanying report

HECTOR D2.2 Page 2 of 21

Chapter 2 Design of TRNGs and PUFs in FPGA

2.1 Data Interfaces

The HECTOR hardware evaluation platform is composed of the motherboard and associated
daughterboard. To make the remote testing of FPGA designs implemented in the
daughterboard possible, the daughterboard is connected to the motherboard. Hereby we
use a limited number of signals realizing a fast data interface based on the low voltage
differential signalling (LVDS) and a simple synchronous serial interface using two data
signals (input and output), and one clock signal.

Although both data interfaces are always available, they are not used for the TRNG and PUF
implementation and testing in the same way. Therefore, we describe separately the two
available modes of communication between motherboard and daughter board.

2.1.1 Data interface dedicated to TRNG implementation and testing

Data interface dedicated to TRNG implementation and testing uses three LVDS pairs
(LVDS0, LVDS1, and LVDS2) and three general purpose input/output (GPIO) signals
(GPIO0 - GPIO2) configured as presented in Figure 1. Note that the LVDS3 pair is separated
into two independent inputs/outputs used in the serial control interface.

Figure 1: TRNG data and control interface

Two kinds of data can be output via the fast data interface depending on the value of the
Mux_sel signal:

 A raw binary signal - Mux_sel = 0

 An 8-bit data signal (for jitter characterization) - Mux_sel = 1

The Parallel to Serial Converter converts 8-bit data to a bit stream and it adds start and stop
bit to guarantee byte alignments. The interface is synchronized with the Data_clk signal
featuring the maximum frequency of 250 MHz.

The Serial Control Interface includes 64-bit parallel to serial and serial to parallel converters,
which are aimed to read the TRNG status and to write a control command to the TRNG core.
The application software can read the TRNG status any time (usually before and after data
acquisition or once the alarm signal (from the fast data interface) is asserted.

D2.2 – ASIC and FPGA Designs: Accompanying report

HECTOR D2.2 Page 3 of 21

2.1.2 Data interface dedicated to PUF implementation and testing

The data interface dedicated to the PUF implementation and testing uses one LVDS pair
(LVDS0), two GPIO signals (GPIO1 and GPIO2), and one LVDS3 pair separated to two
independent inputs/outputs used in the serial control interface, as presented in Figure 2.
Note that in this case, besides the clock signal sent from the motherboard, the fast data
interface is not needed - only a limited amount of data is transferred.

Figure 2: PUF data and control interface

A synchronous serial interface (SSI), similar to that used by the TRNG, is used to transfer
challenges and responses. The data are transferred as 64-bit words, with the first word
containing control information. The control word consists of the PUF_mode and the number
of words which will be received and transferred by the daughter board. The data words are
immediately received depending on this number. The daughter board responds by the
sending 32-bit PUF_status and appropriate data words. The clock received from the
motherboard is used as a main internal clock to avoid potential problems between two board
clock domains.

2.2 Implementation of TRNGs in FPGA

Referring to deliverable D2.1, we implemented two types of TRNGs in HECTOR daughter
boards:

 Phase locked loop (PLL) based TRNG,

 Delay chain (DC) based TRNG.

Their design is shortly described and discussed in the following subsections.

2.2.1 PLL TRNG

The PLL TRNG uses random jitter of the clock signal generated inside the phase locked loop
as a source of randomness. The PLL TRNG is configured as presented in Figure 3.

Figure 3: Architecture of the PLL TRNG

PUF core
1024-bit
register

Serial
control

(SSI)

SSI_tx (LVDS3P)

SSI_rx (LVDS3N)

SSI_clk (GPIO1)

Start_process

n_Reset (GPIO2) Fast data
interface

Serial
control

interface

8

1024

1024

PUF_mode

64

64

32 PUF_status

Clk (LVDS0)

D2.2 – ASIC and FPGA Designs: Accompanying report

HECTOR D2.2 Page 4 of 21

The TRNG core uses two PLLs connected in parallel. PLL1 generates one to four phases of
the jittery clock signal and PLL0 generates the reference clock signal. A decimator adds
modulo 2 the binary samples (the output of the XOR gate) obtained during KD periods of the
reference clock signal. The decimator input value (the output of the XOR gate) is used in
embedded tests (the Total failure test and Online tests) and its output is used as a raw
random bit. Since the Total failure test has a latency of 256 periods TQ (each period TQ lasts
KD periods of the reference clock signal), a 256-bit buffer is inserted before the output of the
generator. This way, all output bits are verified by the Total failure test.

Depending on the value of the mux_sel signal, the TRNG core outputs the output of the XOR
gate (this is particularly useful for jitter characterization) or the output of the decimator (which
can be used to create a raw random bit stream).

The total failure alarm is output via a dedicated output included in the fast data interface and
the corresponding bit is set up in the state register. Besides the Total failure test and Online
test bit flags, the status register contains values of parameters needed for jitter
characterization.

2.2.1.1 Implementation and implementation results

The PLL TRNG was implemented in VHDL and mapped to the HECTOR Cyclone V daughter
board. The only part of the design which needed special attention is the routing between
PLL1 outputs and sampling D flip-flops (see Figure 3). The routing needed to be made
manually so that the signal delays between clock buffers (which route PLL outputs to the
device) and flip-flops match as much as possible. The placement of the clock buffers and
sampling flip-flops is clear from the floor plan, which is depicted in Figure 4.

Figure 4: Floor plan of the HECTOR PLL TRNG

PLL TRNG implementation results in Altera Cyclone V FPGA are presented in Table 1. The
following parameters characterize the area occupied by individual TRNG modules and by the
whole TRNG:

ALMs: Altera adaptive logic modules,

Comb. ALUTs: Altera combinational adaptive look-up tables,

Registers: Dedicated registers.

PLL1

Clock
buffers

Samping
DFFs

D2.2 – ASIC and FPGA Designs: Accompanying report

HECTOR D2.2 Page 5 of 21

Note that the total TRNG area is slightly bigger than the sum of the sizes of individual
modules. The difference represents the area of the top level module containing status
register and error vectors.

Module ALMs Comb. ALUTs Registers

TRNG core 38 43 82

Jittter_eval 62 76 123

SSI 132 107 361

Out_sel 134 142 356

Total 386 413 960

Table 1: PLL TRNG implementation results

2.2.2 DC TRNG

The architecture of the DC TRNG is shown in Figure 5. The generator extracts the entropy
from the timing jitter accumulated in the ring oscillator. The output of each stage in the
oscillator is connected to a tapped delay-chain.

Figure 5: Architecture of the DC TRNG

A tapped delay chain consists of fast buffers with flip-flops connected at the output of each
stage. The signal for sampling the tapped delay chains is derived from the quartz oscillator
using the frequency divider. The encoder performs a simple operation on the data captured
in the tapped delay chains in order to extract a single raw bit: it filters the “bubbles“ in the
code that can be created due to violating the timing conditions of the flip-flops, determines
the position of the signal edge using priority encoding and outputs the least significant bit of
the position.

A parity filter is used for post-processing the raw data. Depending on the value of the signal
mux_sel, either the raw data or the post-processed data is sent to the output. Two dedicated
outputs are used to send the alarm signals in case of a total failure or a statistical weakness.

D2.2 – ASIC and FPGA Designs: Accompanying report

HECTOR D2.2 Page 6 of 21

2.2.2.1 Implementation and implementation results

The DC TRNG was implemented in Verilog and mapped to the HECTOR Spartan-6 daughter
board. Dedicated placement was required for the ring-oscillator and the tapped delay chains.
The tapped delay chains were implemented using Xilinx CARRY4 primitives. Half of the
slices on Xilinx Spartan-6 FPGA contain these primitives. Since these primitives are
connected using dedicated routing paths on FPGA, it is necessary to place all elements of a
single tapped delay chain in a single column, next to each other. The ring oscillator is
implemented using three LUTs. Each LUT is placed next to the corresponding tapped delay
chain. The placement of the tapped delay chains and the ring oscillator is clear from the floor
plan, which is depicted in Figure 6.

 Figure 6: Floor plan of the HECTOR DC TRNG

The implementation of DC TRNG consumes 77 slices (183 LUTs and 125 registers) on Xilinx
Spartan-6 FPGA.

2.3 Implementation of PUF in FPGA

Referring to the deliverable D2.1, we implemented the TERO PUF in FPGA. Its design is
shortly described and discussed in the following subsections.

2.3.1 TERO PUF

A PUF extract process variation to generate a unique response as a fingerprint of the
device. The TERO PUF generates this response by comparing the number of oscillations of
TERO cells. The TERO PUF is configured as presented in Figure 7.

D2.2 – ASIC and FPGA Designs: Accompanying report

HECTOR D2.2 Page 7 of 21

Figure 7: Architecture of the TERO PUF

The implemented PUF is composed of 128 oscillators (oscillating cells), two counters and a
bit extractor as depicted in Figure 7. Cells are divided in two blocks, A and B. To avoid
correlation, a cell of the block A is always compared to a cell of the block B and is used only
once. One cell per block is selected using two de-multiplexers. Two multiplexers are placed
right after the cell blocks in order to drive the correct cell outputs to the clock counters. The
cell selection is usually called a challenge. Compared TERO cells are triggered at the same
time.

We compare the number of oscillations at the output of two selected cells using a subtractor.
Up to 2 bits per challenge can be extracted from the subtraction result. Counters and
activation time of the control signal need to be sized according to the mean number of
oscillations of the TERO cells. In our case, counters feature 11 bits and activation time is set
to 1µs.

This is done for all implemented TEROs and the resulting bits are concatenated to form a
128-bits response. The response is stored in a shift register.

2.3.1.1 Implementation and implementation results

The TERO PUF was implemented in VHDL and mapped to the HECTOR SmartFusion2
daughter board. The implementation must be done carefully to avoid that the comparison of
two cells depends on their position in the FPGA. Otherwise, some comparisons tend to be
biased towards a certain value. Consequently, cells must have identical topology. For that,
the first thing to do is to keep the cell structure unaltered during all the synthesis, place and
route processes in the design workflow. This achieved by using a low level VHDL code.

Delays between gates in an FPGA have significant impact since many gates (or buffers)
must be crossed to connect two elements. Consequently, elements of individual cells have to
be rigorously placed side by side. This is achieved using the Chip Planner Constraint
Manager or a Physical Design Constraint (pdc) file.

To ensure that no routing can cross oscillating cells, exclusive regions need to be created.
They are physical regions on the FPGA where only assigned elements can be placed. To

D2.2 – ASIC and FPGA Designs: Accompanying report

HECTOR D2.2 Page 8 of 21

avoid the routing to cross those regions, the “constrain routing” option must be selected. It is
necessary to create one region per cell block.

The placement of the TERO cells is depicted in Figure 8.

Figure 8: Floor plan of the TERO PUF

TERO PUF implementation results in Microsemi SmarFusion2 FPGA are presented in Table
2. The following parameters characterize the area occupied by individual TERO PUF
modules and by the whole PUF:

LUTs: Look-up tables

Registers: Dedicated registers

Module LUTs Registers

TERO cells 4460 30

Controller 38 35

Shift register 0 128

Total 4498 193

Table 2: TERO PUF implementation results

D2.2 – ASIC and FPGA Designs: Accompanying report

HECTOR D2.2 Page 9 of 21

Chapter 3 Design of TRNGs and PUFs in ASIC

3.1 HECTOR ASICs

Two HECTOR-dedicated ASICs are designed in the framework of the HECTOR project.
These chips will serve for TRNG and PUF characterization and testing. In the following
sections, we describe each particular TRNG and PUF implementation, which will be included
in these ASICs. Finally, we describe the contents of each ASIC as well as its interface.

3.1.1 Implementation of TRNGs in HECTOR ASIC

3.1.1.1 PLL TRNG

The ASIC implementation of the PLL TRNG is similar to the FPGA implementation. The
differences come from different PLL parameters. While in FPGA there are usually multiple
outputs available per each PLL, it is not the case in ASIC. The PLL, which was available for
ASIC TRNG design has only one clock output. Therefore, the TRNG design was modified
and sample counter (which replaces the decimator from the PLL TRNG design in FPGAs)
was put directly after the sampling flip-flops.

In comparison to its FPGA counterpart the ASIC implementation of the PLL TRNG features
only one data output. This output consists of 12 bits. The LSB of the output represents the
random bit at the output of the TRNG. The whole 12-bit value can be used for jitter
characterization.

The architecture of the ASIC implementation of the PLL TRNG is depicted in Figure 9.

Figure 9: Architecture of the PLL TRNG in the HECTOR ASIC

D2.2 – ASIC and FPGA Designs: Accompanying report

HECTOR D2.2 Page 10 of 21

Figure 10 depicts the layout of the PLL TRNG. It occupies the area of 325 µm x 750 µm.

Figure 10: Layout of the PLL TRNG in the HECTOR ASIC

3.1.1.2 ELO TRNG

The elementary ring oscillator based TRNG (ELO TRNG) uses a jitter accumulated in ring
oscillators to generate random bits. Figure 11 depicts the architecture of the ELO TRNG
implemented in HECTOR ASIC.

The TRNG uses two ring oscillators (ROs), where one determines the sampling frequency
and the second one is the sampled signal. One RO from Bank 0 (denoted RO 0.0 – RO 0.7
in Figure 11) serves as a noise source (it generates the sampled clock signal). The RO from
Bank 1 (denoted RO 1.0 – RO 1.7 in Figure 11) is used, together with a 32-bit counter, to
generate a sampling clock signal. The period of the sampling signal, and thus the jitter
accumulation period, can be controlled by the preloaded value of K.

Figure 11: Architecture of the ELO TRNG in the HECTOR ASIC

We implemented the TRNG using 8 different ROs of different size to achieve 8 different
frequencies. This approach allows for some flexibility in testing the TRNG since every RO
has slightly different parameters. Before the delivery of ASIC we can only estimate the
frequency of each RO (350 Mhz, 430 Mhz, 500 Mhz, 560 Mhz, 630 Mhz, 670 Mhzn 720 Mhz,
916 Mhz) using electrical simulations. Figure 12 shows the layout of the ELO TRNG ASIC
implementation. It occupies the area of 42 µm x 90 µm.

D2.2 – ASIC and FPGA Designs: Accompanying report

HECTOR D2.2 Page 11 of 21

Figure 12: Layout of the ELO TRNG

3.1.2 Implementation of PUFs in HECTOR ASIC

3.1.2.1 TERO test modules

In order to characterize TERO cells and to evaluate the influence of the number of
oscillations, we implemented 128 TERO cells with different configurations. Final objective is
to establish a model to predict the mean number of oscillations of a TERO cell regarding its
configuration. TERO cells are included by blocks of 8. By consequence we have 16 different
configurations. To avoid correlations between cells, only one TERO cell is running at a time.
We use a de-multiplexer to send the activation signal to the selected TERO cell and a
multiplexer to send the correct TERO cell output. To maximize the signal quality, TERO cells
are outputted on LVDS. Figure 13 depicts the layout of the TERO cells where we can clearly
identify 16 implemented blocks.

Figure 13: TERO test modules layout

D2.2 – ASIC and FPGA Designs: Accompanying report

HECTOR D2.2 Page 12 of 21

3.1.2.2 TERO and RO based PUF

We implemented one TERO PUF and one RO PUF. Since those two structures are very
similar and the only difference is that one structure is comparing the number of oscillations
and the other the frequency of oscillation, we implemented them using the same counters.

Figure 14 depicts the structures of the PUFs. Both structures are composed of two blocks of
128 oscillating cells.

The TERO PUF principle is the same as that described in the FPGA implementation. The
only difference is that the subtraction is done outside of the ASIC.

The RO PUF is comparing the oscillation frequency. Compared RO cells are triggered at the
same time. As soon as one of the counters reaches a maximum value, an arbiter stops them.
If it is the one from the block A, resp. block B, the arbiter generates a ’1’, resp. ’0’. This is
done for all implemented ROs and the resulting bits are concatenated to form the 128-bits
response.

Figure 14: TERO and RO PUF structures

Counters are 16-bits and the arbiter is configurable. This means that we can choose which
bit of the counters we compare. Figure 15 depicts the layout of the PUFs.

D2.2 – ASIC and FPGA Designs: Accompanying report

HECTOR D2.2 Page 13 of 21

Figure 15: TERO and RO PUF layout

3.1.3 HECTOR ASIC #1 contents

A first HECTOR ASIC was submitted to manufacturing on February 20th 2017.
This ASIC already contains the PLL TRNG design as well as test structures to start
characterizing the TERO cell used in the HECTOR PUF design. Due to an earlier than
expected (pulled-in) chip release schedule, the complete PUF design will be integrated later
in the upcoming HECTOR ASIC #2 (next section). The expected delivery date for this first
HECTOR ASIC is July 2017.

D2.2 – ASIC and FPGA Designs: Accompanying report

HECTOR D2.2 Page 14 of 21

3.1.3.1 Interfaces

ASIC interfaces are designed with regard to the target application. Since the HECTOR ASIC
is intended to be a research test chip focused on TRNGs and PUFs, we designed its
interface to provide fast data outputs and a light-weight data input.

The inputs and outputs of the ASIC can be characterized as either dedicated to a particular
block or shared within all the blocks. The dedicated inputs and outputs are:

 PLL clock input

 LVDS outputs for both PLLs

 LVDS output for TERO test modules

The shared inputs and outputs are:

 Global clock input

 Reset input

 32-bit output bus

 Serial command input

Figure 16 shows the full pin-out of the HECTOR ASIC #1 with description of all pins.

Figure 16: HECTOR ASIC pin-out

D2.2 – ASIC and FPGA Designs: Accompanying report

HECTOR D2.2 Page 15 of 21

3.1.3.1.1 Data interface description

The HECTOR ASIC is controlled by commands sent using the config_serial and
config_ready inputs. The command is an 88-bit long word, which is composed as follows:

 First 4 bits identify the block

 The rest of the word contains configuration data specific to each block

The output of the ASIC is 32-bit long data word which contains output data of the active
block. Since only one block can be active at a time, the output can be easily shared between
all of the core blocks.

Figure 17 shows the functional diagram of the data interface. Commands are read from the
config_serial input by the shift register. Upon reception of the config_rdy signal, input is
stored by the input latch. The command is then read and interpreted by the control logic,
which then sends appropriate data to an appropriate core block. Output data is routed from
the core block through the control logic. Control logic then sends output data to the ASIC
output and generates a data_rdy and next_config signals. The data_rdy indicates that a new
data word is available at the output. The next_config is used only for PUFs in order to
indicate that a PUF is ready to process another challenge.

Figure 17: Functional diagram of HECTOR ASIC interface

D2.2 – ASIC and FPGA Designs: Accompanying report

HECTOR D2.2 Page 16 of 21

3.1.4 HECTOR ASIC #2 contents

A second HECTOR ASIC with additional TRNG and PUF designs will be submitted for
manufacturing in June 2017 with an expected delivery date in November 2017. This ASIC
design features:

 PLL TRNG

 ELO TRNG

 RO PUF

 TERO PUF

 Updated TERO test modules

3.1.4.1 Interfaces

We reuse data interface of the HECTOR ASIC #1 in ASIC #2.

3.2 ST ASICs

Besides the HECTOR-dedicated and HECTOR-funded ASICs described in the previous
section, we also had opportunities to get some HECTOR designs implemented into ST-
internal ASICs. These are typically ST-internal test chips whose purpose is to validate new
ST technology or product developments. These typically come with strong confidentiality and
sample distribution restriction constraints. However, they do represent additional
opportunities to see HECTOR primitives implemented on silicon and when successful could
ease the path towards commercial exploitation in ST products.

3.2.1 ST ASIC #1

3.2.1.1 TERO TRNG in ST ASIC #1

The design is based around a TERO core (see deliverable D2.1) with an asynchronous
counter counting the number of oscillations until the oscillator stops. A control register allows
tuning adjustable TERO design parameters (delays). A status register allows detecting when
the core stopped oscillating and a counter register allows reading the counter stop value.

Figure 18: Architecture of the TERO-TRNG implementation in the ST ASIC #1

D2.2 – ASIC and FPGA Designs: Accompanying report

HECTOR D2.2 Page 17 of 21

3.2.1.2 Interface

The interface was pre-defined (imposed) and is very simple. All communications are handled
via a standard SPI interface, which uses the SPI_CLK, SPI_POSI, SPI_MISO and
SPI_SS_N pins. Two additional pins are bonded but not used for TERO.

Several variants of the TERO core design have been implemented. Communication with
these TRNGs is handled through registers accessed via the SPI:

 CRx control register (R/W)
o tero_enable:
o tero_start
o tero_adj_sel

 SRx status register (RO)
o stopl
o stoph

 CNTRx counter stop value register (RO)

With “x” in CRx, SRx and CNTRx specifying which instance of TERO core is being
addressed.

The generator is started by setting bits tero_enable and tero_start in the CR control register.
TERO design parameters (delays) can be adjusted via the tero_adj_sel configuration bits.

Checking bits stopl or stopr from status register SR allows to check if the TERO has stopped
and in which logical state.

The value of the counter at which the TERO stopped can be read from the CNTR registers.

The output bit (random) is the parity of the value at which the counter stopped.

The count value itself can be exploited to make statistics and run online tests. This is not
done on-chip for this test chip but on a host PC computer. In a final instantiation, this could
be done on-chip.

Pin # Signal

4 CLK

6 NRST

7 VDD

10 VCC

13 Not used

14 Not used

16 GND

18 SPI_CLK

19 SPI_MOSI

20 SPI_MISO

21 SPI_SS_N

Figure 19: Pin-out of the STR ASIC #1.

D2.2 – ASIC and FPGA Designs: Accompanying report

HECTOR D2.2 Page 18 of 21

3.2.1.3 Implementation

Several variants of the TERO core design allow comparing different ways to implement and
control the delay elements from the TERO core.

The design has been implemented in Verilog and synthesized for the target 40nm ST silicon
technology. Three iterations of this ASIC have been manufactured, which allowed fine-tuning
some of the design parameters between iterations.

Below is a table summarizing the silicon area of the six TERO structures in the last test chip.
It is worth noting that these structures are extremely small.

Tero 1 Tero 2 Tero 3 Tero 4 Tero 5 Tero 6

1100 µm² 2200 µm² 1750 µm² 1700 µm² 3100 µm² 1600 µm²

Table 3: Silicon cost for the different TEROs in ST ASIC #1

The “back-end” of the chip designs (layout, I/O-Ring, etc.) has been performed by an ST
team not involved in HECTOR. Below is a picture of the ASIC assembled within a DIL test
chip package.

Figure 20: Picture of ST ASIC #1 in DIL test package

3.2.2 ST ASIC #2

We also seized an additional opportunity to design and integrate a PLL-based TRNG (see
D2.1) in an ST-internal system-on-chip ASIC.

3.2.2.1 PLL TRNG in ST ASIC #2

The principle remains the same as for the PLL-based TRNG designs in FPGA and HECTOR
ASICs. The differences are related to usage of a more aggressive silicon technology node,
different PLLs with specific available division/multiplication factors and different jitter
properties, and to the constraints related to PLL1 being imposed and not dedicated to the
TRNG. PLL1 is a “system” PLL whose primary function is to generate the different clocks
needed by the system-on-chip, from the various crystal oscillators’ configurations that the
circuit needs to support. The sampling flip-flop is followed by a configurable decimator which
allows accumulating entropy from the unstable, entropy-carrying samples, over as many
periods as needed to reach the target level of entropy. The decimator is followed by memory
which holds the output bits being tested by the dedicated online tests. They are released to
the post-processing block once the dedicated online test results are successful. Diagnosis
modes (not depicted in the above diagram) allow extracting bits at various stages of the

D2.2 – ASIC and FPGA Designs: Accompanying report

HECTOR D2.2 Page 19 of 21

process for debug and characterisation purposes. The TRNG subsystem is addressed
through control, status and result registers accessible from the processor of the system-on-
chip.

Figure 21: Architecture of the PLL-based TRNG in ST ASIC #2

3.2.2.2 Interface

In contrast to the HECTOR & ST ASIC #1, The TRNG isn’t directly accessible from via the
chips’ input/output pins, but rather through one of the processors inside the chip. This is a
complex, applicative system-on-chip circuit whose pin-out and interfaces aren’t really
relevant here and can’t be detailed due to confidentiality constraints.

3.2.2.3 Implementation

The design has been implemented in Verilog and synthesized for the target 40 nm ST silicon
technology. The table below summarizes the silicon area costs for the digital part of the
design, as well as the surface for the memory and PLL0 (hard macros). The surface of the
system PLL is not reported since it is not dedicated to the PRNG. It is worth noting that the
silicon cost is dominated by the PLL and 50 to 100 times higher than TERO.

 Digital logic RAM PLL 0

Silicon cost 5’500 µm² 5’900 µm² 150’000 µm²

Table 4: Silicon cost for the different elements of the PLL-TRNG in ST ASIC #2

The design will be integrated in a large system-on-chip circuit managed by an ST team not
involved in HECTOR. This chip should be released to manufacturing towards the end of the
second quarter and we hope to receive samples around fall.

D2.2 – ASIC and FPGA Designs: Accompanying report

HECTOR D2.2 Page 20 of 21

Chapter 4 Summary and Conclusion

This document provided a short, public summary of the D2.2 design deliveries from
HECTOR WP2, which is the HECTOR work-package focusing on TRNGs and PUFs.

While FPGA designs can be produced and tested in a software-like “iterative mode”, the
design and manufacturing of ASICs is a much longer and costlier process. We already
received and evaluated TERO TRNG ASIC designs implemented in ST-internal test chips,
and are now eagerly waiting for the HECTOR ASICs that we expect to receive from
manufacturing during the second half of this year, as well as a new ST ASIC that we should
receive in a similar time-frame. These will allow to measure performances and perform
characterizations on real-silicon and to compare versus our modelling and simulation results.

FPGA instantiations of the PLL and DC TRNG designs, together with documentation have
already been delivered to Brighsight for security evaluation. These allow starting “pen and
paper” security analysis as well as lab-level security characterization efforts.

We acknowledge and agree with recommendation R3 from the expert report of the October
5th 2016 review, which stressed the importance of proper robustness assessments and
comparisons of HECTOR WP2 designs. These important activities will continue until the end
of the project (and in some cases only start once we receive ASICs back from
manufacturing) and therefore were not the focus of D2.2 or this accompanying report.

D2.2 – ASIC and FPGA Designs: Accompanying report

HECTOR D2.2 Page 21 of 21

Chapter 5 List of Abbreviations

ASIC Application Specific Integrated Circuit

DC TRNG Delay Chain TRNG

ELO TRNG Elementary Oscillator TRNG

FPGA Field Programmable Gate Array

PLL Phased-Lock Loop

LVDS Low Voltage Differential Signalling

PUF Physically Unclonable Function

RO Ring Oscillator

TERO Transition Effect Ring Oscillator

TRNG True Random Numbers Generator

	Executive Summary
	Table of Content
	List of Figures
	List of Tables
	Chapter 1 Introduction
	Chapter 2 Design of TRNGs and PUFs in FPGA
	2.1 Data Interfaces
	2.1.1 Data interface dedicated to TRNG implementation and testing
	2.1.2 Data interface dedicated to PUF implementation and testing

	2.2 Implementation of TRNGs in FPGA
	2.2.1 PLL TRNG
	2.2.1.1 Implementation and implementation results

	2.2.2 DC TRNG
	2.2.2.1 Implementation and implementation results

	2.3 Implementation of PUF in FPGA
	2.3.1 TERO PUF
	2.3.1.1 Implementation and implementation results

	Chapter 3 Design of TRNGs and PUFs in ASIC
	3.1 HECTOR ASICs
	3.1.1 Implementation of TRNGs in HECTOR ASIC
	3.1.1.1 PLL TRNG
	3.1.1.2 ELO TRNG

	3.1.2 Implementation of PUFs in HECTOR ASIC
	3.1.2.1 TERO test modules
	3.1.2.2 TERO and RO based PUF

	3.1.3 HECTOR ASIC #1 contents
	3.1.3.1 Interfaces
	3.1.3.1.1 Data interface description

	3.1.4 HECTOR ASIC #2 contents
	3.1.4.1 Interfaces

	3.2 ST ASICs
	3.2.1 ST ASIC #1
	3.2.1.1 TERO TRNG in ST ASIC #1
	3.2.1.2 Interface
	3.2.1.3 Implementation

	3.2.2 ST ASIC #2
	3.2.2.1 PLL TRNG in ST ASIC #2
	3.2.2.2 Interface
	3.2.2.3 Implementation

	Chapter 4 Summary and Conclusion
	Chapter 5 List of Abbreviations

