
HECTOR Evaluation Platform

Tutorial

O. PEŤURA1, M. LABAN1,2, V. FISCHER1

1Univ Lyon, UJM – Hubert Curien Laboratory
2MICRONIC a.s.

Objectives of this tutorial 1/2

• Present HECTOR evaluation platform
− Hardware
− Firmware
− Software

• Present reference designs of the platform
− Motherboard only

� Controlling outputs of the motherboard
� Processing a data file (input→ processing→ output)

− Motherboard & Daughter board
� Reading counter values from the Daughter boards (M, A)
� Reading random data from the Daughter boards (M, A)

– Plugged to the SATA connector
– Connected via the HDMI cable

• Let you make your own design

May 23rd, 2016 2/102

Objectives of this tutorial 2/2

• To share our knowledge

• To simplify your developments

• To ask you to contribute on several levels
− System level
− Hardware level
− Firmware level
− Software level

May 23rd, 2016 3/102

Outline
HECTOR evaluation platform

Overview
Control software in the host PC
Firmware for the ARM processor
Logic design in the FPGA fabric

Reference designs
Motherboard only designs

Controlling outputs of the motherboard
Processing a data file

Motherboard & daughter board designs
Reading counter values from the daughter boards
Reading random data from the daughter boards

Let you make your own design
Completing the design for the daughter board and motherboard
Completing and running the script

May 23rd, 2016 4/102

HECTOR – Hardware enabled crypto and randomness

• New approaches in the hardware design of
− Random number generators
− Physical unclonable functions
− SCA-hardened authenticated encryption

• Evaluation platform
− Suitable for implementation of TRNGs, PUFs and side

channel attacks
− Flexible and easy to use (and attack?)
− Architecture close to that of the demonstrators

• Demonstrators
− Robust – difficult to attack
− Should validate/illustrate the main results of the project

May 23rd, 2016 5/102

HECTOR evaluation platform toolkit – overview
• Sofware • Firmware • Hardware

Host
PC Motherboard

Daughter
board

Tcl
interpreter

User Tcl
script

MSS
firmware

FPGA
fabric

FPGA
fabric

Predefined
functions

User
logic

Control
logic

Periph.
interfaces

DUT

HECTOR hardware evaluation platform

User needs to change
User can change
User should not change

Comm.
interfaces

May 23rd, 2016 6/102

HECTOR evaluation platform – motherboard

• Basic element of
the evaluation
platform
• Provides data

acquisition facilities
• Provides means of

communication
between PC and
design under test
(DUT)

May 23rd, 2016 7/102

HECTOR evaluation platform – daughter boards

• Primary platforms for DUT
implementation
• Small, simple, and cheap

design (for PUFs)
• Minimize external interference
• Can be connected via HDMI

cable
• Three daughter boards

available
− Microsemi SmartFusion 2
− Altera Cyclone V
− Xilinx Spartan 6

May 23rd, 2016 8/102

Intended applications

• Evaluation of cryptographic primitives
− TRNGs
− PUFs
− Authenicated encryption

• Comparison across different FPGA families
• Evaluation of encryption schemes
• Implementation of a complete cryptographic system

(prototype of the demonstrator)
• Implementation of side channel attacks

May 23rd, 2016 9/102

Software – on the Host PC

• Controls the data acquisition system via a serial link
(USB→ UART) using Tool Command Language (TCL)

• Can access DDR RAM on the HECTOR board via a
mass-storage USB driver to send/receive large files (up
to 30 MB)

May 23rd, 2016 10/102

Motherboard
• FPGA SoC

− ARM microcontroller

� Receives commands from PC
� Controls the DUT by sending commands to the FPGA fabric
� Maintains a filesystem for data transfers (up to 32 MB in size)

− FPGA Fabric

� Provides DMA access to the DDR RAM for the DUT
� Serves as a communication channel between the PC and DUT

• USB hub connected to

− USB→ UART converter
− ARM-created filesystem on the DDR RAM
− One SD card reader

• Three daughter board connectors (requested by HECTOR partners)
• Three micro-SD card sockets + 64 MB DDR SDRAM

May 23rd, 2016 11/102

Microsemi SmartFusion2 SoC

May 23rd, 2016 12/102

Communications within the evaluation platform

Host
PC

USB
HUB

FTDI
UART

converter

USB
PHY

Needs
FTDI driver

Natively
supported

by the Host
System

ARM ROM

RAM
64MB

Communication
system

Send packets
by UART to ARM

Download/upload
files from/to board

Interpret
other routines

Large data
access

USB UARTUSB

8

USB

SF2 – SoC FPGA

TCL – Tool Command Language
SF2 - Microsemi SmartFusion 2

HECTOR EB

TCL script

TCL interpreter

HDMI SATA ZIF

Daughter board

2

Data

May 23rd, 2016 13/102

Functional diagram of the motherboard

Packetizer
depacketizer

USB Mass
storage

class driver

Filesystem Data cache

Communication
control

(Predefined
SW functions

called
from scripts)

Data

Ctrl

CMD
State

...

<32-bit>

Data

FPGA
registers

(ahb_reg.vhd)

Command
execution

state machine

Application
logic

RAM interface

(ram_if.vhd)

External RAM 64 MB

(ctrl.vhd)

GPIO

Data Data

MSS FPGA fabric

UART

USB
PHY

Software
Hardware

SF2

Cmds

Data

May 23rd, 2016 14/102

Design model 1
DUT implemented directly in the motherboard

Host
PC

HECTOR
Motherboard

USB

TCL script
+

File access

PC comm.
+

DUT comm.

DUT

• Better for development
• More flexible & larger data interface
• Better suited for implementation of cryptographic

algorithms

May 23rd, 2016 15/102

Design model 2
DUT implemented in the daughter board

Host
PC

HECTOR
Motherboard

USB

HECTOR
Daughter board

LVDS

GPIO

TCL script
+

File access

PC comm.
+

DUT comm.

DUT
+

MB comm.

• Well suited for testing TRNG and PUF implementations
• DUT can be tested remotely in a controlled

environment:
− Temperature – temperature controlled chamber
− Electromagnetic interference – Faraday cage
− Voltage – external power supplies

May 23rd, 2016 16/102

Setting-up power supplies for daughter boards (1/2)

Configuration for daughter board
Altera Cyclone V

May 23rd, 2016 17/102

Setting-up power supplies for daughter boards (2/2)

Configuration for daughter boards
SmartFusion 2 & Spartan 6

May 23rd, 2016 18/102

PC connections and board reset

May 23rd, 2016 19/102

Daughter board connections

Signal DATA 0 DATA 1 DATA 2 DATA 3 IO 0 IO 1 IO 2
P N P N P N P N

SATA pin AB15 AA15 AB13 AB14 AA11 AB11 AA10 AB10 Y9 W10 W9
HDMI pin Y18 Y19 AB18 AB19 AA17 AB18 Y17 W17 Y20 U18 V17

May 23rd, 2016 20/102

Outline
HECTOR evaluation platform

Overview
Control software in the host PC
Firmware for the ARM processor
Logic design in the FPGA fabric

Reference designs
Motherboard only designs

Controlling outputs of the motherboard
Processing a data file

Motherboard & daughter board designs
Reading counter values from the daughter boards
Reading random data from the daughter boards

Let you make your own design
Completing the design for the daughter board and motherboard
Completing and running the script

May 23rd, 2016 21/102

PC communicates with the HECTOR motherboard
via two channels

• UART – for commands, status, small data (32-bit data
blocks)
− 115 200 baud
− 8 data bits, 1 start bit, 1 stop bit
− No parity

• USB mass-storage device – transfer of large files
− Does not need additional drivers
− Files can be uploaded to and downloaded from the

device
− Files can be up to 30 MB in size

May 23rd, 2016 22/102

UART communication protocol

• Packet based – 12-byte packets sent and received

• PC is a master device – it has to initialize every
communication

• Communication based on the command-response
pairs:
− Each command generates a response
− New command cannot be sent before the response to

the previous one has been received

May 23rd, 2016 23/102

Packet types

Command packets:
Control packet – sends commands to the processor
Fabric packet – sends commands and data to the

application controller (in the FPGA fabric)
Read file packet – starts the operation and saves its output

data to a file
Write file packet – loads the input file into the RAM

Response packets:
Status packet – returns the firmware and acquisition status
Fabric status packet – returns the status and data from the

FPGA fabric controller

May 23rd, 2016 24/102

Control packet

13 C0 00 00 .____________. ww xx yy zz

4B 4B 4B

reserved
MSS instruction
GPIO config
Not used
Not used

Zero padding
Prefix
Head

• The MSS instruction tells the firmware what to do
• The GPIO config depends on the instruction:
− GPIO direction
− GPIO value
− Not used if the instruction is not GPIO related

• Response to the Control packet is a Status packet

May 23rd, 2016 25/102

Read file packet

13 FD 00 00 xx zz zz zz zz

4B max 12B 4B

file_name

File size in bytes
Space character (0x20)

Zero padding
Prefix
Head

1B

• Starts acquisition of a data file
• The filename is at most 12 characters long
• The specified filename will be used to save the file on

the HECTOR disk
• The file size is given in the big endian coding style
• The response to the Read file packet is a Status packet

May 23rd, 2016 26/102

Write file packet

13 3D 00 00 xx zz zz zz zz

4B max 12B 4B

file_name

File size in bytes
Space character (0x20)

Zero padding
Prefix
Head

1B

• Loads the file from the HECTOR disk into the RAM
• The filename is at most 12 characters long
• The File size is given in the big endian coding style
• Response to the Write file packet is a Status packet

May 23rd, 2016 27/102

Status packet

13 57 00 00 .____________. ww xx yy zz

4B 4B 4B

reserved
MSS response
GPIO value
Operation state
Operation progress (%)

Zero padding
Prefix
Head

• Status packet is returned after every command

May 23rd, 2016 28/102

Fabric packet

13 FB 00 00

4B 4B 4B

fabin_reg

Zero padding
Prefix
Head

cmd_reg

• Sends a 32-bit command and 32-bit data to the FPGA
controller
• Both fields (command and data) are coded in big

endian
• Response to the Fabric packet is a Fabric status packet

May 23rd, 2016 29/102

Fabric status packet

13 F5 00 00

4B 4B 4B

fabout_reg

Zero padding
Prefix
Head

fabst_reg

• Returns the status of the FPGA controller and a 32-bit
data word from the FPGA fabric
• Both fields are coded in big endian

May 23rd, 2016 30/102

TCL interface to the HECTOR board

• TCL interpreter is embedded in every EDA tool
(including Libero)
• Easy to manipulate strings and files
• We provide TCL language extension for HECTOR

evaluation board (in HECTOR data acq.tcl)�� �
Include HECTOR TCL extension

source HECTOR_data_acq.tcl

Open the serial connection

set deviceHandle [openDevice COM1]

Get the device status

getStatus $deviceHandle

Close the serial connection

disconnect $deviceHandle�
May 23rd, 2016 31/102

Opening and closing the connection

Open the connection to the board at COM1 and save it
to the variable ”deviceHandle”�� �
set deviceHandle [openDevice COM1]�

Close the connection�� �
disconnect $deviceHandle�

May 23rd, 2016 32/102

Getting the board’s status

Read status of the board�� �
getStatus $deviceHandle�

Returns a TCL list which includes:
0. Response to the last command
1. Current operation progress
2. State of the acquisition
3. GPIO value (HEX)
4. FPGA controller status (HEX)
5. FPGA controller data (HEX)

May 23rd, 2016 33/102

Controlling the GPIOs

Configure GPIOs as inputs or outputs
<value> is an 8-bit decimal value, in which every bit set to 0
represent input and 1 represent output.�� �
configureGPIO $deviceHandle <value >�

Set the GPIO output value
<value> is an 8-bit decimal value, in which bits set as
inputs (by the previous command) are ignored.�� �
setGPIO $deviceHandle <value >�

May 23rd, 2016 34/102

Resetting the board components

Reset the FPGA-based control logic�� �
sendFabricReset $deviceHandle�

Reset the daughter board�� �
sendDaughterReset $deviceHandle�

Reset the FPGA-based control logic as well as
motherboard firmware�� �
softReset $deviceHandle�

May 23rd, 2016 35/102

Selecting the daughter board connector

Select active daughter board connector�� �
selectDaughterBoard $deviceHandle <value >�

<value> is either 1 or 2:
1 corresponds to the HDMI connector, whereas 2
corresponds to the SATA connector.

May 23rd, 2016 36/102

Sending commands and data to FPGA

Send command and/or data to the control logic block in
the FPGA fabric�� �
sendFabricCommand $deviceHandle <command > <data >�

<command> is a 32-bit command sent to the FPGA
controller.
<data> is a 32-bit data word sent to the FPGA controller.

May 23rd, 2016 37/102

Filesystem operations 1/4

Create a filesystem in the DDR RAM�� �
createFileSystem $deviceHandle�

Mount the filesystem to the PC�� �
mountDisk $deviceHandle�

May 23rd, 2016 38/102

Filesystem operations 2/4

Acquire data to a data file�� �
beginAcquisition $deviceHandle <filename > <size >�

<filename> is a name for the file created in the RAM
filesystem. It may contain up to 12 characters.
<size> is the size of the file in bytes.

Load a data file from the filesystem to the RAM�� �
loadInputFile $deviceHandle <filename > <size >�

<filename> is the name of the file in the filesystem, which
should be loaded to the RAM. It may contain up to
12 characters.
<size> is the size of the file in bytes.

May 23rd, 2016 39/102

Filesystem operations 3/4

Synchronize disks (finish all read/write operations) to
ensure all files are written and intact�� �
syncDrives�

May 23rd, 2016 40/102

Filesystem operations 4/4

Find the HECTOR drive (its letter, mount point)�� �
findHECTOR <timeout >�

<timeout> is the timeout in seconds. If the timeout passes
and the HECTOR disk is not found, the function returns 0
and you have to find the drive (mount it) manually.

Returns a TCL list:
0. Disk letter (device node in Linux)
1. UUID (48A1-0000)
2. Mountpoint

May 23rd, 2016 41/102

Operating system support

Functions of synchronizing the disks and automatic disk
discovery are supported by:

Windows – full support
Linux – need to have access to the blkid utility and

permissions to sync disks (mount)
MAC – not yet supported

May 23rd, 2016 42/102

Outline
HECTOR evaluation platform

Overview
Control software in the host PC
Firmware for the ARM processor
Logic design in the FPGA fabric

Reference designs
Motherboard only designs

Controlling outputs of the motherboard
Processing a data file

Motherboard & daughter board designs
Reading counter values from the daughter boards
Reading random data from the daughter boards

Let you make your own design
Completing the design for the daughter board and motherboard
Completing and running the script

May 23rd, 2016 43/102

ARM firmware

Consists of:
• Initialization part
• UART routines
• USB Mass storage routines
• Predefined functions of the controller

May 23rd, 2016 44/102

Initialization part of the firmware

At start up:

• Configures:
− GPIO
− UART
− RAM memory
− Timers and interrupts

• Resets FPGA fabric

May 23rd, 2016 45/102

UART routines in the firmware

• Recognize the header of the packet
• Collect packet data
• Load new command to the MSS or FPGA
• Load other data words according to the packet type

May 23rd, 2016 46/102

USB mass storage routines in the firmware

• Use Microsemi drivers
• Based on Microsemi example
• Allow direct access to one half of the external RAM
• Work independently of the main controller routines

May 23rd, 2016 47/102

Controller with the predefined functions

• Executes received
instructions
• Manages operations

in FPGA
• Provides simple way

of how to insert new
instructions
• Consists of several

predefined functions
called by packets

Waiting for
new instruction

(idle state)

Get new
instruction

Execute
instruction

Send response

May 23rd, 2016 48/102

Predefined functions of the controller (1/5)

MB IDLE (0x00)
• Default state, no instruction is called
• Controller returns to this state after every instruction
• Check firmware operation state

MB FAB CMD (0x01)
• Take a reserved word from the Control packet and sent

it to the FPGA
• Obsolete instruction

MB GET OP STATE (0x07)
• Return the firmware status packet
• Useful to see the actual process of the operation

May 23rd, 2016 49/102

Predefined functions of the controller (2/5)

MAKE FAB RST (0x04)
• Assert reset of the FPGA fabric during 1 ms
• State of the operation can not be in the ‘busy’ state
• The reset signal sent to MSS GPIO 8

MAKE GEN RST (0x05)
• Assert reset of the generator (or other entity) during

1 ms
• The reset signal sent to MSS GPIO 9

MB OP RST (0x0B)
• Resets the state of the internal operation and the FPGA

fabric (same as MAKE FAB RST instruction)

May 23rd, 2016 50/102

Predefined functions of the controller (3/5)

GPIO 0 - 7 are configured by the following instructions:

MB GPIO CFG (0x09)
• Set appropriate direction of GPIO according to the

GPIO config byte from the Control packet
• 0 - input, 1 - output (GPIO 0 is the LSB bit)

MB GPIO SET (0x0A)
• Set appropriate value of GPIO according to the GPIO

config byte from the Control packet
• 0 - low, 1 - high (GPIO 0 is the LSB bit)

May 23rd, 2016 51/102

Predefined functions of the controller (4/5)

MB MAKE FSYS (0x08)
• Create the file system
• Can be used to delete every file from the HECTOR disk

MB MOUNT DISK (0x0A)
• Configure the Mass storage interface and connect the

HECTOR disk to the Host PC
• Command can be used to refresh the contents of the

HECTOR disk seen by the Host PC

May 23rd, 2016 52/102

Predefined functions of the controller (5/5)

GEN DATA COLLECT (0x02)
• Function called by the Read file packet
• Write data to the WSIZE and WSTART FPGA registers

and start execution of the FPGA command
MB LOAD FILE (0x0D)
• Function called by the Write file packet
• Write data to the RSIZE and RSTART FPGA registers

and copy data from the file system to RAM
SEND FAB RSP (0x0C)
• Function called by the Fabric packet
• Writes data to the FABIN and FPGA CMD registers and

returns values of the FABOUT and FABST registers

May 23rd, 2016 53/102

Firmware debugging

• Build a binary for debugging
• Create the Debug Launch Configuration
• Run Debug

May 23rd, 2016 54/102

Activate Debug Build Configuration

May 23rd, 2016 55/102

Add/Modify Linker script

May 23rd, 2016 56/102

Build a binary for debugging

• (Clean Project)
• <Ctrl>–

May 23rd, 2016 57/102

Create a debug configuration

• <Run>–<Debug Configurations>

May 23rd, 2016 58/102

Setup and run the debug configuration

May 23rd, 2016 59/102

Debugging

May 23rd, 2016 60/102

Debugging

• F5 – Step into
• F6 – Step over
• F7 – Step return
• F8 – Resume

May 23rd, 2016 61/102

Outline
HECTOR evaluation platform

Overview
Control software in the host PC
Firmware for the ARM processor
Logic design in the FPGA fabric

Reference designs
Motherboard only designs

Controlling outputs of the motherboard
Processing a data file

Motherboard & daughter board designs
Reading counter values from the daughter boards
Reading random data from the daughter boards

Let you make your own design
Completing the design for the daughter board and motherboard
Completing and running the script

May 23rd, 2016 62/102

FPGA fabric controller

• Provides interface between ARM and user entity
• Consists of two components
− RAM interface
− FPGA fabric registers

• Two options to control user entity:
− Command execution state machine
− User application

May 23rd, 2016 63/102

FPGA fabric registers (1/4)

• Developed for commands and small data blocks
• Accessible only by ARM and dedicated packets
• For ARM, registers are accessible as an AHB slave

device
• Controlled by the ahb reg.vhd component in the control

unit

Wait for
activation

and address

Read/write
data from/to
FPGA register

May 23rd, 2016 64/102

FPGA fabric registers (2/4)

cmd reg
• Command register accessible by the Fabric packet
• If a new value is written to the cmd reg, then the

new cmd flag is asserted
• Allows to execute various operations in the FPGA fabric
• Directly accessible to the Fabric packet (the second

32-bit word of the packet is written to the register)
state reg
• State register providing information about the FPGA for

the MSS and subsequently for the host PC
stage reg
• Stage register showing actual read/write address of

RAM

May 23rd, 2016 65/102

FPGA fabric registers (3/4)

fabin reg
• FPGA fabric input register (dir: MSS→ FPGA fabric)
• Directly accessible to the Fabric packet (the first 32-bit

word of the packet is written to the register)
fabout reg
• FPGA fabric output register (dir: FPGA fabric→ MSS)
• The value sent in the Fabric status packet (the first

32-bit word of the packet)
fabst reg
• Used to monitor internal FPGA state
• The value sent in the Fabric status packet (the second

32-bit word of the packet)

May 23rd, 2016 66/102

FPGA fabric registers (4/4)

wstart reg, wsize reg
• Parameters defining position and size of the user file

(data in RAM)
• wstart reg is the start address of the data stream and

wsize reg is the size of the stream
rstart reg, rsize reg
• rstart reg is the start address of the stream and

rsize reg is the size of the stream
user1 reg, user2 reg
• Reserved registers, not used, yet

May 23rd, 2016 67/102

RAM interface

• DMA based transfer for large data depending on the
start address and number of required bytes
• Data are written to the external RAM via the AHB bus,

independently from ARM
• Controlled by the ram if.vhd component in the control

unit

Initialization signals:
• byte cnt - Number of bytes to read/write
• addr in - Start address
• data wr - Type of operation (read/write)
• ram strt - Starting of the RAM operation

May 23rd, 2016 68/102

RAM interface

32
data_in

1
data_in_vld

32
data_out

1
data_out_vld

32
byte_cnt

32
addr_in

data_wr
1

ram_strt
1

1

1

1

32

wr_buf_fl

wr_buf_ofw

ram_bsy

ram_stg

Initialization
signals

Input data
interface

Info
signals

Output data
interface

RAM interface

AHB bus
interface

May 23rd, 2016 69/102

RAM interface - Data writing

• data in - Input data
• data in vld - Input data validation signal

clk

ram_strt

data_wr

data_in dat1 dat2 dat3

data_in_vld

addr_in adr

byte_cnt 0x0B

ram_bsy

May 23rd, 2016 70/102

RAM interface - Data reading

• data out - Output data
• data out vld - Output data validation signal

clk

ram_strt

data_wr

data_out dat1 dat2

data_out_vld

addr_in adr

byte_cnt 0x08

ram_bsy

May 23rd, 2016 71/102

RAM interface - Information signals

• ram stg - RAM stage (currently used address)
• ram bsy - Ram busy flag
• wr buf ofw - Write fifo overflowed
• wr buf fl - Write fifo full

Writing to the RAM interface - data are inserted to the FIFO

Reading from the RAM interface - data are present directly
at the output of the block no FIFO is used

May 23rd, 2016 72/102

Command execution state machine
• Controlled directly by the

Fabric packet
• Simple state machine

controlling various
operations
• Commands depend on the

user application

Fixed commands:
− Idle command (0x00) - do

nothing
− ‘Operation start’ command

(0x01) - used by ARM to
run an operation

Waiting for
new command

Execute
command

May 23rd, 2016 73/102

Outline
HECTOR evaluation platform

Overview
Control software in the host PC
Firmware for the ARM processor
Logic design in the FPGA fabric

Reference designs
Motherboard only designs

Controlling outputs of the motherboard
Processing a data file

Motherboard & daughter board designs
Reading counter values from the daughter boards
Reading random data from the daughter boards

Let you make your own design
Completing the design for the daughter board and motherboard
Completing and running the script

May 23rd, 2016 74/102

Outline
HECTOR evaluation platform

Overview
Control software in the host PC
Firmware for the ARM processor
Logic design in the FPGA fabric

Reference designs
Motherboard only designs

Controlling outputs of the motherboard
Processing a data file

Motherboard & daughter board designs
Reading counter values from the daughter boards
Reading random data from the daughter boards

Let you make your own design
Completing the design for the daughter board and motherboard
Completing and running the script

May 23rd, 2016 75/102

Reference design 1

Objective
Control output bits of the motherboard from the script and
switch LEDs on and off

Command
execution

state machine

(ctrl.vhd)

GPIO
FPGA fabric

Ram
interface

FPGA
registers

CMD
register

11-bit LED
register

SATA
connector

1LED1

Motherboard Daughter board

Increment
LED register

Decrement
LED register

Set
LED register

CMD
State
Fabin

FPGA
registers

(ahb_reg.vhd)

Fabout
Fabst

...

1LED2

1LED11

1LED1
1LED2

1LED11

11 x

Commands

May 23rd, 2016 76/102

Blinking LEDs

• Uses the daughter board with LEDs
• The Fabric packet is used to let LEDs blink
• LEDs are connected to an 11-bit register
• Command execution state machine allows to:
− Set the LED register (0x06)
− Increment the LED register (0x04)
− Decrement the LED register (0x05)

• The Fabin register is connected to the Fabout register
• The Fabst register is the LED register

May 23rd, 2016 77/102

Workflow

1. Open the project
2. Accept updates (if any)
3. Compile the project (if needed)
4. Program FPGA fabric
5. Run the script

May 23rd, 2016 78/102

Outline
HECTOR evaluation platform

Overview
Control software in the host PC
Firmware for the ARM processor
Logic design in the FPGA fabric

Reference designs
Motherboard only designs

Controlling outputs of the motherboard
Processing a data file

Motherboard & daughter board designs
Reading counter values from the daughter boards
Reading random data from the daughter boards

Let you make your own design
Completing the design for the daughter board and motherboard
Completing and running the script

May 23rd, 2016 79/102

Reference design 2

Objective
Send data to the processing block→ process data→ read
processed data

Command
execution

state machine

(ctrl.vhd)

GPIO
FPGA fabric

Ram
interface

FPGA
registers

CMD
register

Read block of data

Run data process

Motherboard

Write block of data

Wait for start

Enough of
written bytes

Write block of dataWrite block of data

No

Yes

Data process

Wait for start

(text_process.vhd)

Data

256Data_proc

Strt_proc 1

256

End_proc 1

Txt_format 1

May 23rd, 2016 80/102

Necessary script steps

1. Send the Control packet to make the file system
2. Send the Control packet to mount the HECTOR disk
3. Copy text file to the HECTOR disk
4. Unmount or synchronize the HECTOR disk
5. Send the Write file packet to copy data from file to RAM
6. Send the Fabric packet to set mode of the text

processing
7. Send the Read file packet to run operation and set size

and name of required file
8. Repeatedly send the Control packet to get the state of

the operation
9. Send the Control packet to mount the HECTOR disk

10. Copy the file from the HECTOR disk

May 23rd, 2016 81/102

Workflow

1. Open the project
2. Accept updates (if any)
3. Compile the project (if needed)
4. Program FPGA fabric
5. Run the script

May 23rd, 2016 82/102

Outline
HECTOR evaluation platform

Overview
Control software in the host PC
Firmware for the ARM processor
Logic design in the FPGA fabric

Reference designs
Motherboard only designs

Controlling outputs of the motherboard
Processing a data file

Motherboard & daughter board designs
Reading counter values from the daughter boards
Reading random data from the daughter boards

Let you make your own design
Completing the design for the daughter board and motherboard
Completing and running the script

May 23rd, 2016 83/102

Reference design 3
Objective
Implement a simple 32-bit counter in the daughter board
and read the counter values into the file

Command
execution

state machine

(ctrl.vhd)

GPIO
FPGA fabric

Ram
interface

FPGA
registers

CMD
register

32-bit counter

par2ser

Shifted counter

(cnt_gen.vhd)

ser2par

Data out

S/P converter

(s_p_conv.vhd)

Valid sig.
sample

Data
transfer

Valid

Data

1

32

Data

1Data_clk

Sync 1

Data 1

Data_clk 1

Sync 1

SATA
connector Data 1

Data_clk 1

Sync 1

FPGA fabric

1nReset

2GPIO

nReset

Data 1

Data_clk 1

Sync 1

HDMI
connector

1nReset

2

nReset

GPIO

1nReset

Mux out 1

Sync_en

1

Motherboard Daughter board

(mux.vhd)

May 23rd, 2016 84/102

Necessary script steps

1. Send the Control packet to make the file system
2. Send the Fabric packet to choose the connector
3. Send the Fabric packet to enable a synchronization
4. Send the Read file packet to run operation and set size

and name of the required file
5. Repeatedly send the Control packet to get the state of

the operation
6. Send the Control packet to mount the HECTOR disk
7. Copy the file from the HECTOR disk

May 23rd, 2016 85/102

Workflow

1. Open the project
2. Accept updates (if any)
3. Compile the project (if needed)
4. Program FPGA fabric
5. Run the script

May 23rd, 2016 86/102

Outline
HECTOR evaluation platform

Overview
Control software in the host PC
Firmware for the ARM processor
Logic design in the FPGA fabric

Reference designs
Motherboard only designs

Controlling outputs of the motherboard
Processing a data file

Motherboard & daughter board designs
Reading counter values from the daughter boards
Reading random data from the daughter boards

Let you make your own design
Completing the design for the daughter board and motherboard
Completing and running the script

May 23rd, 2016 87/102

Reference Design 4

Objective
Implement simple RNG (PLL-TRNG) and read random data
before and after the decimator, using a multiplexer
controlled by the script (mux(gpio))

D

clk

Q D

clk

Q
DFF DFF

KD counter

clk_in

D

clk

Q
DFF

clk

PLL1
in out

PLL2
in out

lock

lock n_rst (gpio)

clk (lvds)

data (lvds)

mux (gpio)

cljjit

cljref

n_rst

n_rst rst

rst

May 23rd, 2016 88/102

Hardware structure of the project

Command
execution

state machine

(ctrl.vhd)

GPIO
FPGA fabric

Ram
interface

FPGA
registers

CMD
register

(pll_trng.vhd)

ser2par

Data out

S/P converter

(s_p_conv.vhd)

Valid sig.
sample

Data
transfer

Valid

Data

1

32

Data

1Data_clk

Sync 1

Data 1

Data_clk 1

Sync 1

SATA
connector

Data 1

Data_clk 1

FPGA fabric

1nReset

2GPIO

nReset

Data 1

Data_clk 1

Sync 1

HDMI
connector

1nReset

2

nReset

GPIO

1nResetnReset

Mux out 1

Sync_en

1

Motherboard Daughter board

(mux.vhd)

PLL TRNG

1GPIO

May 23rd, 2016 89/102

Workflow

1. Open the project
2. Accept updates (if any)
3. Compile the project (if needed)
4. Program FPGA fabric
5. Run the script

May 23rd, 2016 90/102

Outline
HECTOR evaluation platform

Overview
Control software in the host PC
Firmware for the ARM processor
Logic design in the FPGA fabric

Reference designs
Motherboard only designs

Controlling outputs of the motherboard
Processing a data file

Motherboard & daughter board designs
Reading counter values from the daughter boards
Reading random data from the daughter boards

Let you make your own design
Completing the design for the daughter board and motherboard
Completing and running the script

May 23rd, 2016 91/102

Let you make your own design
Objective
Implement the PLL-TRNG including simple tests with alarm
and state word outputs

D

clk

Q D

clk

Q

DFF DFF

KD counter

clk_in

D

clk

Q

DFF
clk

PLL1

in out

PLL2

in out

lock

lock

8b 8b 16b

version state
n_rst (gpio)

reg_data (gpio)

reg_clk (gpio)

alarm (lvds)

clk (lvds)

data (lvds)

mux (gpio)

cljjit

cljref

n_rst

n_rst
rst

rst

reg_start (gpio)

May 23rd, 2016 92/102

Communication waveforms
• Script launches the request to read the state (s enbl)
• Motherboard starts the communication and generates clock (start, reg clk)
• Daughter board samples the state and sends out 32 bits (reg data)
• Receiver confirms reception of the state word to the firmware (s vld)

May 23rd, 2016 93/102

Hardware structure of the project

Command
execution

state machine

(ctrl.vhd)

GPIO
FPGA fabric

Ram
interface

FPGA
registers

CMD
register

(pll_trng.vhd)

ser2par

Data out

S/P converter

(s_p_conv.vhd)

Valid sig.
sample

Data
transfer

Valid

Data

1

32

Data

1Data_clk

Sync 1

Data 1

Data_clk 1

Alarm 1

SATA
connector

FPGA fabric

1Reg_dat

1Reg_clk

Mux out 1

Sync_en

1

Motherboard Daughter board

(mux.vhd)

Secured
PLL TRNG

1

1GPIO

Reg_strt

1nReset

Data 1

Data_clk 1

Alarm 1

HDMI
connector

1Reg_dat

1Reg_clk

1

1GPIO

Reg_strt

1nReset

s_word

s_data

Get status

(get_state.vhd)

Data 1

Data_clk 1

Alarm 1

1Reg_dat

1Reg_clk

1

1GPIO

Reg_strt

1nReset

S_vld

S_data

S_enbl

1

Data

1

1
Alarm

Alarm

Reg_dat

1

1

Commands

Refresh
state

Get
state

Get
time

May 23rd, 2016 94/102

Outline
HECTOR evaluation platform

Overview
Control software in the host PC
Firmware for the ARM processor
Logic design in the FPGA fabric

Reference designs
Motherboard only designs

Controlling outputs of the motherboard
Processing a data file

Motherboard & daughter board designs
Reading counter values from the daughter boards
Reading random data from the daughter boards

Let you make your own design
Completing the design for the daughter board and motherboard
Completing and running the script

May 23rd, 2016 95/102

Workflow for the daughter board design

1. Copy the project pll trng to a new folder

2. Open the project

3. Accept IP cores updates (if any)

4. Modify the file pll trng.vhd (add the state registrer and interface)

5. Design the block Get status of the motherboard (get state.vhd)

6. Write the testbench and include the two entities (pll trng & get state)

7. Simulate new pll trng and the communication between the two
boards using the testbench

8. If OK, define the pinout of the daughter board FPGA

9. Compile the project of the daughter board

10. Program FPGA fabric of the daughter board

May 23rd, 2016 96/102

Workflow for the motherboard design

1. Open the project

2. Accept IP cores updates (if any)

3. Copy the file get state from the daughter board project

4. Modify the file ctrl.vhd (add new states, e.g. Get state...)

5. Modify mux.vhd (add new i/f signals)

6. Specify the new pinout of the motherboard FPGA

7. Compile the project of the motherboard

8. Program FPGA fabric of the motherboard

May 23rd, 2016 97/102

Partial block diagram of the FPGA fabric

May 23rd, 2016 98/102

Outline
HECTOR evaluation platform

Overview
Control software in the host PC
Firmware for the ARM processor
Logic design in the FPGA fabric

Reference designs
Motherboard only designs

Controlling outputs of the motherboard
Processing a data file

Motherboard & daughter board designs
Reading counter values from the daughter boards
Reading random data from the daughter boards

Let you make your own design
Completing the design for the daughter board and motherboard
Completing and running the script

May 23rd, 2016 99/102

Workflow

1. Copy the script from the project pll trng
2. Modify the script to

2.1 Request to read the TRNG state
2.2 Read the response
2.3 Print out the response (the TRNG state)

3. Run the script
4. Enjoy your new design!

May 23rd, 2016 100/102

And now...

The End

We hope you enjoyed the tutorial!

Now, it’s your turn, please contribute!

Should you need some help, don’t hesitate to contact:
Marek Laban (laban@micronic.sk) – for problems concerning the hardware
Marcel Kleja (kleja@micronic.sk) – for problems concerning the firmware
Oto Petura (oto.petura@univ-st-etienne.fr) – for problems concerning the software

May 23rd, 2016 101/102

”The HECTOR project has received funding from
the European Union’s Horizon 2020 research

and innovation programme under grant
agreement number 644052.”

If you need further information, please contact the coordinator:

TECHNIKON Forschungs- und Planungsgesellschaft mbH
Burgplatz 3a, 9500 Villach, AUSTRIA

Tel: +43 4242 233 55, Fax: +43 4242 233 55 77
E-Mail: coordination@hector-project.eu

The information in this document is provided ”as is”, and no guarantee or warranty is given that the
information is fit for any particular purpose. The user thereof uses the information at its sole risk and liability.

May 23rd, 2016 102/102

mailto:coordination@hector-project.eu

	HECTOR evaluation platform
	Overview
	Control software in the host PC
	Firmware for the ARM processor
	Logic design in the FPGA fabric

	Reference designs
	Motherboard only designs
	Motherboard & daughter board designs

	Let you make your own design

